Release update

- Early May: METplus v4.0.0 with MET v10.0.0, METviewer 4.0.0 and METexpress 4.0.0 with METcalcpy 1.0.0, METplotpy 1.0.0, METdatadb 1.0.0 utilities

- Using TDR and Dropsondes to evaluate models
- Improved TC-Genesis use-cases
- Hovmoller and Tropical Wave Phase Diagrams
- Interface in METcalcpy to read MET output to replicate METviewer/METexpress capability using flat files on HPCs (rather than a database)
New Capabilities
One Tools Many Apps: TC-Genesis

- **Collaboration with Dan Halperin, Embry-Riddle Aeronautical University**

- Compare forecast of TC-Genesis to actual BEST track and CARQ genesis events

- Writes contingency table counts and statistics; netCDF files of genesis events

Figure: Tropical cyclogenesis verification for the NH for 2016. Symbols represent the Best Track (black), hits (green), late Genesis (blue) and false alarms (red).

Halperin et al., 2017

Li et al., 2016
Hovmoeller and Phase Diagrams

Space-time coherence spectra
TDR and Dropsondes for Evaluating TCs Using of Python Embedding

Image courtesy of Michael S. Fischer, Robert F. Rogers, Paul D. Reasor at NOAA/AOML/HRD
Upcoming Capability
TC Graphics

Intensity Error Box Plots

Frequency of Superior Performance

Plot_TCMRP - R-statistics script
Being transitioned to Python
Measure of goodness for Perf. Diagram

See AMS presentation in 2 weeks
How to integrate this into HAFS workflow?

- METplus can use environment variables
- Has been integrated into other workflows:
 - Rocoto – GFS Workflow
 - Rocoto – DTC Testing
 - Rose – Met Office
 - EC Flow – it will need to be now that METplus 3.1 is on the operational side of WCOSS
- HPC Stack – working on this
- AWS Machine Image for use with Prototypes on AWS
 - Cristiana Stan – beta tester
 - Looking for others
- https://dtcenter.org/community-code/metplus/metplus-3-1-existing-builds

WCOSS, Hera, Jet, Orion Cheyenne, Stampede2
Existing Capabilities
TC-RMW

- **Collaboration with NCAR/DTC and NOAA/HRD**
- Tropical Cyclone Radius of Maximum Winds (TC-RMW) tool
 - Implements methodology of the Hurricane Research Division, **HRD DIA-Post** tool
 - Reads ATCF track data and corresponding gridded model fields
 - For each track point, select storm center and compute an azimuthal average over multiple heights and radii.
 - Writes NetCDF output file
- Configurable options:
 - Model fields and vertical levels
 - Radius in km or as a function of RMW
Evaluating TC Precipitation

There were questions about if METplus could help with evaluating precipitation on a moving nest. Three capabilities that may be helpful:

Automated Regridding in core MET tools
- Can regrid analysis to nest projection

Feature Relative use-cases
- Remove the displacement errors
- Compute additional diagnostic fields using Python Embedding

PCP-Combine
- Can be used to compute Sum, Different, Min, Max, Mean, Standard Deviation of two or more fields
- Python Embedding can also be used with this tool to potentially convert from Precipitation Rate to amount and then summed using this tool
Regrid_Data_Plane
& Automated Regridding

Config
File: grid to verify on: FCST, OBS, or USER DEFINED

Impact #1 – Decreased complexity & storage requirements
Old method: Regrid outside MET
Regrid to FCST or OBS - requires at least 1 more file
Regrid to USER DEFINED - requires 2 more files

Automated regridding could save 0.5 to 7.5 GB per operational cycle Equates to 60 GB – 1 TB per month of storage

Impact #2 – Less complexity for using climatologies
Climatologies may not be on same grid as forecasts. See Impact #1
Methodology

- Run a tracker on forecast and analysis field
- Use METplus to extract a tile centered on each lat/lon pair of track
- Use MET Series-Analysis to compute statistics for paired fields within tile irrespective of displacement
PCP-Combine –derive option

- **PCP-Combine** originally designed to sum, add, or subtract precipitation accumulation intervals. Add option to **derive** (sum, min, max, range, mean, stdev, vld_count) statistics from a list of input fields.

```
cpc_combine  -derive  min,max,mean,stdev  \
gfs.t00z.pgrb2.0p25.f000  gfs.t00z.pgrb2.0p25.f006  \
gfs.t00z.pgrb2.0p25.f012  gfs.t00z.pgrb2.0p25.f018  \
gfs.t00z.pgrb2.0p25.f024  \
-field 'name="TMP"; level="Z2";' derive_TMP_Z2.nc
```

May be useful when verifying daily temperature extremes.