How Good are the "Best Tracks"? Estimating Uncertainty in the Atlantic Hurricane Database

Chris Landsea National Hurricane Center

13 March, 2013 HFIP Bi-monthly Meeting

- NHC **"best tracks"** (conducts a post-season analysis) all TCs for the following:
- a) Intensity (max 1 min 10 m winds to nearest 5 kt)
- b) Central Pressure (1 mb)
- c) **Position** (6 nm)

d) Maximum Gale (34 kt) Radii (since 2004, 5 nm)

- e) Maximum Storm (50 kt) Radii (since 2004, 5 nm)
- f) Maximum Hurricane (64 kt) Radii (since 2004, 5 nm)

Position Uncertainty

Tropical Storm Large Position Fix Spread (Gordon 2006) Major Hurricane . Againg Small Position Fix Spread (Dean 2007)

A survey of the NHC Hurricane Specialists was conducted in **2010** for their estimates of the average errors (uncertainties) inherent in the best tracks that they create.

Best Track average error estimates are stratified both by:

Tropical Storm

Category 1&2 Hurricanes Major Hurricanes

and by:

Satellite Only Aircraft and Satellite Data U.S. Landfalling

2010 Atlantic Basin Best Track Average Error Estimates Satellite Imagery Only (Dvorak, Microwave, & QuikSCAT) (Average errors for: intensity, central pressure, position, gale-50 kt-hurricane force radii)

Hurricane	Tropical	Category 1 & 2	Major					
Specialist	Storm	Hurricanes	Hurricanes					
L. Avila	15kt / 5mb / 40nm/ 50-50nm	15kt / 5mb / 40nm/ 50-50-50nm	15kt / 5mb / 20nm/ 50-50-50nm					
R. Berg	15 kt / 10 mb / 45 nm / 60-30 nm	10 kt / 10 mb / 30 nm / 60-30-15 nm	10 kt / 10 mb / 10 nm / 60-30-15 nm					
J. Beven	10 kt/3 mb/40 nm/ 40-20 nm	10 kt/5 mb/20 nm/40-20-10 nm	10 kt/7 mb/5 nm/40-20-20 nm					
E. Blake	10 kt/ 5 mb/ 25 nm/ 45-25 nm	10 kt/ 8 mb/ 20 nm/ 35-25-20	10-15 kt/ 10 mb/ 10-15 nm/ 30-25-20					
M. Brennan	10 kt/5mb/30 nm/20-15 nm	10 kt/8 mb/15 nm/30-20-20	15 kt/15 mb/10 nm/30-30-20					
D. Brown	7-12 kt/5 mb/30 nm/25-35 15-20 nm	8-15kt/7-12mb/20nm/25-40 20-30 10-20nm	14-22kt/8-14mb/10-15nm/25-40 20-30 10-20nm					
J. Cangialosi	10 kt/5 mb/30 nm/40-20 nm	10 kt/8 mb/15 nm/40-30-20 nm	15 kt/12 mb/10 nm/40-30-20 nm					
J. Franklin	10-15 kt/5-7 mb/ 25 nm/ 40-30 nm	10-15 kt/7-10 mb/20 nm/40-30-20 nm	15 kt/7-10 mb/15 nm/40-30-20 nm					
T. Kimberlain	10 kt/6-8 mb/30 nm/25-25 nm	10 kt/7-9 mb/20 nm/25 25 5-10 nm	5-10 kt/5-8 mb/5 nm/25 25 5-10 nm					
R. Pasch	15 kt/5 mb/40 nm/50-50 nm	15 kt/5 mb/25 nm/50-50-40 nm	15 kt/5 mb/15 nm/50-50-40 nm					
S. Stewart	10 kt/8 mb/45 nm/20-20 nm	10 kt/10 mb/30 nm/30-30-30 nm	15 kt/15 mb/20 nm/40-40-40 nm					
Consensus (Range)	11.5 kt/5.8 mb/34.5 nm/38.0 & 27.7nm (7-15 kt/3-10 mb/25-45 nm/20-60 & 15-50 nm)	11.3 kt/7.7 mb/23.2 nm/39.4 & 30.5 & 22.5 nm (8-15 kt/5-12 mb/15-40 nm/25-60 & 20-50 & 5-50 nm)	13.5 kt/9.5 mb/12.3 nm/39.8 & 32.3 & 24.4 nm (5-22 kt/5-15 mb/5-20 nm/25-60 & 20- 50 & 5-50 nm)					

A similar survey was conducted in **1999** with the current Hurricane Specialists

1999 Atlantic Basin Best Track Error Estimates Satellite Imagery Only

Hurricane	Tropical	Category 1 & 2	Major				
Specialist	Storm	Hurricanes	Hurricanes				
L. Avila	15 kt / 40-50 nm	(No Eye) 15 kt / 40-50 nm (Eye) 15 kt / 20 nm	25 kt / 20 nm				
J. Beven	10 kt / 30 nm	(No Eye) 15 kt / 30 nm (Eye) 10 kt / 10 nm	5-10 kt / 6-12 nm				
J. Jarrell	10 kt / 20 nm	10 kt / 15 nm	20 kt / 10 nm				
M. Lawrence	20 kt / 30 nm	20-25 kt / 25 nm	25 kt / 20 nm				
M. Mayfield	5-10 kt / 30 nm	10-13 kt / 18-24 nm	12-15 kt / 18 nm				
R. Pasch	10 kt / 30 nm	10 kt / 20-25 nm	15-20 kt / 10-15 nm				
E. Rappaport	7-13 kt / 15 nm	10-14 kt / 10-15 nm	10-22 kt / 10 nm				
Consensus (Range)	11.8 kt/ 28.6 nm (5-20 kt/15-50 nm)	13.4 kt/21.2 nm (10-25 kt/10-50 nm)	17.8 kt/14.2 nm (5-25 kt/6-20 nm)				

2010 Atlantic Basin Best Track Average Uncertainty Estimates Central Pressure (mb)

2010 Atlantic Basin Best Track Average Uncertainty Estimates Gale (34 kt) Maximum Radii (nm)

2010 Atlantic Basin Best Track Relative Uncertainty

Implications for Track Forecast Improvement

Goal of Hurricane Forecast Improvement Program (by 2019): "Reduce average track error by 50% for Days 1 through 5."

Implications for Track Forecast Improvement

Goal of Hurricane Forecast Improvement Program (by 2019): "Reduce average track error by 50% for Days 1 through 5."

Implications for Intensity Forecast Improvement

Goal of Hurricane Forecast Improvement Program (by 2019): "Reduce average intensity error by 50% for Days 1 through 5."

Implications for Intensity Forecast Improvement

Goal of Hurricane Forecast Improvement Program (by 2019): "Reduce average intensity error by 50% for Days 1 through 5."

NHC Official Intensity Error Trend Atlantic Basin

Best Track Uncertainties

Best Track Intensity – Average Errors:

Increase Moderately with Intensity Decrease Substantially with Aircraft Data (Substantial Improvement in 2010 compared to 1999)

Best Track Central Pressure – Average Errors:

Increase Moderately with Intensity Decrease to Near Insignificant Values with Aircraft Data

Best Track Position – Average Errors:

Decrease Substantially with Intensity Decrease Substantially with Aircraft Data (Little Change in 2010 compared to 1999)

Best Track Size – Average Errors:

Change Little with Intensity Decrease Moderately with Aircraft Data

Implications for HFIP Goals:

Best track position uncertainty may not substantial hinder track goals Best track intensity uncertainty may make intensity goals unachievable

AL092011,				IRENE,	39,		1.0.0.			
20110821,	0000,	'	тs,	15.0N,	59.0W,	45,	1000			
20110821,	0600,	'	тs,	16.0N,	60.6W,	45,	1000	$\boldsymbol{\beta}$	lan	าค
20110821,	1200,	'	тs,	10.8N,	62.2W,	45,	100:	a > c	Jan	IU
20110821,	1800,	'	тs,	17.5N,	63./W,	50,	995	1 \	1	•
20110822,	0000,	'	тъ, ш	10 ON	65.0W,	60, 65	99:	b) /	Also	D 1
20110822,	1200	'	но,	18.2N,	63.9W,	vo,	990	0)1		
20110822,	1200,	'	но,	10.9N,	67.0W,	70,	90:	\sim	1_{α}	
20110822,	1000,	'	но,	19.3N,	60.0W,	15,	900	C) F	415(JI
20110823,	0000,	'	но,	19./N,	60.8W,	80,	98.	/		
20110023,	1200	'	по , шт	20.1N,	70 GW	°°,	970			tre
20110023,	1200,	'	по , шт	20.4N,	70.0W,	°°,	970			uv
20110823,	1000,	'	по ,	20.7N,	71.2W,	⁰⁰ ,	96	1		•
20110824,	0600,	'	нп,	21.0N,	72.5W,	90, 95	961	d) /	Also	D 1
20110824,	1200	'	нп,	21.3N, 21 GM	72.JW,	105	90.	u) 1		
20110824,	1800,	'	нп,	22.JN,	74 3W	100,	95/			(1
20110825	0000	т.	нп	23 5N	75.1W	95	951			(1a)
20110825.	0600.	-,	ни.	24.1N.	75.9W.	95	95(
20110825.	1200.		HU.	25.4N.	76.6W.	90.	950	250.	200	10
20110825.	1800.	ь.	HU.	26.5N.	77.2W.	90.	950	250.	200.	12
20110826.	0000.	-,	HU.	27.7N.	77.3W.	90.	946	250.	200.	12
20110826.	0600.		HU.	28.8N.	77.3W.	90.	942	250.	200.	13
20110826.	1200,	΄.	HU,	30.0N,	77.4W,	85,	947	250,	200,	13
20110826,	1800,	<i>.</i>	нU,	31.1N,	77.5W,	80,	950	250,	225,	14
20110827,	0000,	Ċ,	нU,	32.1N,	77.1W,	75,	952	225,	225,	14
20110827,	0600,	,	ΗU,	33.4N,	76.8W,	75,	952	, 225,	225,	14
20110827,	1200,	L,	нU,	34.7N,	76.6W,	75,	952	, 225,	225,	15
20110827,	1800,	,	HU,	35.5N,	76.3W,	65,	950,	, 210,	225,	15
20110828,	0000,	,	ΗU,	36.7N,	75.7W,	65,	951,	, 210,	225,	15
20110828,	0600,	,	ΗU,	38.1N,	75.0W,	65,	958,	, 230,	280,	16
20110828,	0935,	L,	тs,	39.4N,	74.4W,	60,	959,	, 230,	280,	16
20110828,	1200,	,	тs,	40.3N,	74.1W,	55,	963,	, 230,	280,	13
20110828,	1300,	L,	тs,	40.6N,	74.0W,	55,	965,	, 230,	280,	13
20110828,	1800,	,	тs,	42.5N,	73.1₩,	50,	970,	, 230,	280,	18
20110829,	0000,	,	EX,	44.2N,	72.1W,	45,	979,	, 230,	315,	25
20110829,	0600,	,	EX,	46.5N,	69.5W,	40,	983,	, 360,	360,	36
20110829,	1200,	,	EX,	49.1N,	66.7W,	40,	985,	, 360,	360,	30
20110829,	1800,	,	EX,	51.3N,	63.8W,	40,	987,	, 0,	360,	

HURDAT2

info as HURDAT includes 34, 50, 64 kt radii includes non-developing opical depressions includes asynoptic times andfall, peak intensity, etc.)

20110020,	,		,		/0.011/	,													
20110825,	1200,	,	HU,	25.4N,	76.6W,	90,	950,	250,	200,	100,	160,	100,	100,	50,	70,	60,	60,	25,	50,
20110825,	1800,	L,	HU,	26.5N,	77.2W,	90,	950,	250,	200,	125,	160,	110,	100,	50,	75,	70,	60,	25,	50,
20110826,	0000,	,	ΗU,	27.7N,	77.3W,	90,	946,	250,	200,	125,	160,	110,	100,	50,	75,	70,	60,	25,	50,
20110826,	0600,	,	HU,	28.8N,	77.3W,	90,	942,	250,	200,	130,	175,	125,	105,	75,	75,	80,	80,	50,	50,
20110826,	1200,	,	HU,	30.0N,	77.4W,	85,	947,	250,	200,	130,	175,	125,	105,	75,	75,	80,	80,	50,	50,
20110826,	1800,	,	ΗU,	31.1N,	77.5W,	80,	950,	250,	225,	140,	175,	125,	125,	80,	75,	80,	80,	50,	50,
20110827,	0000,	,	ΗU,	32.1N,	77.1W,	75,	952,	225,	225,	140,	140,	125,	125,	90,	75,	80,	80,	40,	40,
20110827,	0600,	,	ΗU,	33.4N,	76.8W,	75,	952,	225,	225,	140,	140,	125,	125,	90,	75,	80,	80,	40,	40,
20110827,	1200,	L,	ΗU,	34.7N,	76.6W,	75,	952,	225,	225,	150,	125,	125,	125,	90,	60,	80,	80,	40,	35,
20110827,	1800,	,	ΗU,	35.5N,	76.3W,	65,	950,	210,	225,	150,	125,	125,	125,	80,	60,	75,	75,	35,	35,
20110828,	0000,	,	ΗU,	36.7N,	75.7₩,	65,	951 ,	210,	225,	150,	125,	150,	150,	80,	60,	75,	75,	Ο,	Ο,
20110828,	0600,	,	ΗU,	38.1N,	75.0W,	65,	958,	230,	280,	160,	110,	150,	150,	80,	30,	75,	75,	Ο,	Ο,
20110828,	0935,	L,	тs,	39.4N,	74.4W,	60,	959,	230,	280,	160,	110,	150,	150,	80,	30,	Ο,	Ο,	Ο,	Ο,
20110828,	1200,	,	тs,	40.3N,	74.1W,	55,	963,	230,	280,	130,	50,	150,	150,	80,	30,	Ο,	Ο,	Ο,	Ο,
20110828,	1300,	L,	тs,	40.6N,	74.0W,	55,	965,	230,	280,	130,	50,	150,	150,	80,	30,	Ο,	Ο,	Ο,	Ο,
20110828,	1800,	,	ΤS,	42.5N,	73.1W,	50,	970,	230,	280,	180,	50,	150,	150,	80,	30,	Ο,	Ο,	Ο,	Ο,
20110829,	0000,	,	EX,	44.2N,	72.1W,	45,	979,	230,	315,	250,	50,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
20110829,	0600,	,	EX,	46.5N,	69.5W,	40,	983,	360,	360,	360,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
20110829,	1200,	,	ΕX,	49.1N,	66.7W,	40,	985,	360,	360,	300,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
20110829,	1800,	,	ΕX,	51.3N,	63.8W,	40,	987,	Ο,	360,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,
20110830,	0000,	,	EX,	53.0N,	60.0W,	40,	991,	Ο,	270,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,

How Good are the "Best Tracks"? Estimating Uncertainty in the Atlantic Hurricane Database

Chris Landsea National Hurricane Center

13 March, 2013 HFIP Bi-monthly Meeting

- NHC **"best tracks"** (conducts a post-season analysis) all TCs for the following:
- a) Intensity (max 1 min 10 m winds to nearest 5 kt)
- b) Central Pressure (1 mb)
- c) **Position** (6 nm)

d) Maximum Gale (34 kt) Radii (since 2004, 5 nm)

e) Maximum Storm (50 kt) Radii (since 2004, 5 nm)

f) Maximum Hurricane (64 kt) Radii (since 2004, 5 nm)

2009 Atlantic Basin Best Track Average Error Estimates Intensity (kt) - Experienced versus Newer Forecasters

Average Best Track Intensity Errors (kt)

2009 Atlantic Basin Best Track Average Error Estimates Position (nm) - Experienced versus Newer Forecasters

2009 Atlantic Basin Best Track Average Error Estimates Gale Maximum Radii (nm) - Experienced versus Newer Forecasters

2009 Atlantic Basin Best Track Average Error Estimates Hurricane Maximum Radii (nm) - Experienced versus Newer Forecasters

Category 1&2 Hurricanes

Major Hurricanes

2010 Atlantic Basin Best Track Average Uncertainty Estimates Gale (34 kt) Maximum Radii (nm)

2009 Atlantic Basin Best Track Average Error Estimates Storm (50 kt) Maximum Radii (nm)

2009 Atlantic Basin Best Track Average Error Estimates Hurricane (64 kt) Maximum Radii (nm)

Category 1&2 Hurricanes

Major Hurricanes