Some model physics influences on tropical cyclone size

Robert Fovell and Yizhe Peggy Bu University of California, Los Angeles rfovell@ucla.edu

Acknowledgments: HFIP funding, DTC Visitor Program, Ligia Bernardet, Mrinal Biswas, Christine Holt

Background

Bu et al. (2014) Fovell et al. (2015)

Terminology

- "Semi-idealized" = experiments with simplified initial conditions utilizing operational model configurations as starting points
- "Cloud-radiative forcing" (CRF) = influence of hydrometeors on longwave and shortwave radiation
- CRF-on = total radiative forcing includes clear- and cloudy-sky components
- CRF-off = clouds transparent to radiation but clear-sky radiative forcing still ongoing

"Semi-idealized" HWRF experiment Thompson/RRTMG

Condensate (shaded) and net radiative forcing (K/h) (symmetric fields, temporally averaged through day 4)

Net radiation = LW + SW and includes background (clear-sky) forcing Radiation contour interval differs for positive and negative values

Bu et al. (2014)

"Semi-idealized" HWRF experiment

Thompson/RRTMG CRF-on and CRF-off Thompson/GFDL

CRF influences storm size CM1 axisymmetric Thompson/Goddard

 Condensate and radiation fields in axisymmetric model

- Radiation field imposed as external forcing
- Showed that cloud-top forcing almost irrelevant. Within-cloud LW warming is the key.

Symmetric fields, temporally averaged over several diurnal cycles

Bu et al. (2014) Fovell et al. (2015)

PBL influences on storm size

Zhang et al. (2011) Gopalakrishnan et al. (2013)

Zhang et al. (2011)

- Composite radial inflow vs. normalized radius for Cat 1-5 (top) and Cat 1-3 storms
- BL top defined as **10% of max inflow** (one of several PBL depths examined)
- BL depth increases to ~ 1300 m by 3RMW

HWRF inner core inflow depth

- Gopal et al. (2013) idealized HWRF
- inner-core inflow too deep relative to observations with standard GFS PBL scheme

HWRF inner core inflow depth

Tuning the PBL scheme

$$K_m = k(U_*/\Phi_m)Z[\alpha(1-Z/h)^2],$$

- α = 0.25 fits Zhang et al.'s estimates of eddy diffusivity best
- 2012 operational HWRF used $\alpha = 0.25$ (in nests)
- 2013 operational HWRF used $\alpha = 0.7$, and added variable Ric factor

Note in passing: *Two* separate approaches to controlling the hurricane PBL now exist in HWRF

- (1) gfs_alpha
- (2) Variable critical Richardson number (var_ric), added in 2013
 - <u>So far</u>, semi-idealized <u>aquaplanet</u> experiments suggest var_ric <u>in isolation</u> has little impact on storm width, a small influence on intensity, and a **cosmetic** effect on reported PBL height (see **Appendix**)

Impact of gfs_alpha on storm size in semi-idealized simulations

gfs_alpha acts similarly to CRF, but for different reason... Simulations use HWRF 2013 official release via DTC

- Symmetric radial and tangential winds hours 72-96
- Operational configuration gfs_alpha = 0.7, 0.7, 0.7 (in 2013) coac = 0.75, 3.0, 4.0 Ferrier MP GFDL radiation Variable Ri
- Differences from operations 2012 domain configuration simplified initial conditions, no land no ocean model coupling model physics called every time step

- Symmetric radial and tangential winds hours 72-96
- Modified configuration

gfs_alpha = 0.7, 0.7, 0.7 coac = 0.75, 3.0, 4.0 Ferrier MP RRTMG radiation Variable Ri

Horizontal size differences obscured by nondimensionalization

- Symmetric radial and tangential winds hours 72-96
- Modified configuration

gfs_alpha = 1.0, 0.25, 0.25 (as used in 2012) coac = 0.75, 3.0, 4.0 Ferrier MP RRTMG radiation Variable Ri

- Symmetric radial and tangential winds hours 72-96
- Modified configuration

gfs_alpha = 1.0, 0.25, 0.25 coac = 0.75, 3.0, 4.0 Ferrier MP GFDL radiation Variable Ri

- Results congruent with Gopal et al. (2013)
- 2013 operational gfs_alpha produces deeper, weaker inflow, even with variable critical Richardson number

gfs_alpha also influences outer winds...

Width differences were disguised with nondimensionalized radius Direct impact on storm structure and size Indirect impact on motion (via beta drift)

Ferrier/RRTMG/ α =0.70 (operational alpha)

CRF-related expansion

[Expansion is **larger** farther above surface ... "tip of the iceberg"]

Ferrier/RRTMG/ α =0.25 (reduced alpha)

Storm contraction when α reduced

Ferrier/GFDL/ α =0.25 (reduced alpha)

GFDL has virtually no CRF

R34 varies by factor of 2!

Cat. 3

Cat.

Cat

← Diabatic forcing from microphysics

Diabatic forcing (colored) and tangential wind (contoured) **difference** fields

Enhanced cyclonic flow larger *above* the surface

Other factors being equal...

- CRF encourages wider storms
 - LW in-cloud warming → gentle ascent → enhanced heating → broader horizontal wind profile
 - Bu et al. (2014, JAS) explains how and why
- Increasing gfs_alpha also encourages wider storms
- Using radiation package lacking significant CRF (e.g., current operational HWRF) can partially compensate for a possibly too-large value of gfs_alpha
- Using a CRF-enabled radiation scheme (e.g., RRTMG) AND a large value of gfs_alpha may force storms to be too wide
 - Summer 2014 DTC visit started examining DTC microphysics/ radiation ensemble. Clear evidence of positive size bias for Thompson/RRTMG in Atlantic; East Pacific more complex (track errors → demise when SST gradients are large)

How is gfs_alpha modulating storm size?

(And when might it fail to have much impact?)

Condensation and K_m

- As shown in Gopal et al. (2013), increasing gfs_alpha permits larger K_m
- Condensate (shaded) and K_m (contoured)

Water vapor and K_m differences due to α (semi-idealized)

- Larger gfs_alpha permits greater K_m
- ... which increases vapor at PBL top
- ... which enhances chance of saturation
- ... which produces heating that broadens the wind profile
- Effect will be diminished if Km too small, environment too stable, or too dry

Water vapor and K_m differences due to α (Daniel 04E 2012070406)

- Pattern somewhat similar but magnitudes reduced, shifted downward, impact smaller
- Environment more stable, SST lower, than in semi-idealized experiment
- Example of when gfs_alpha will have less influence

What's the optimal value of gfs_alpha?

Summary

- Enabling CRF and enhancing PBL mixing can *both* lead to wider storms, as measured by R34, etc..
- Connection appears to be indirect, largely via *convective activity* (moistening → heating → wind field broadening)
 - CRF gently lifts air through a large storm volume, mainly above PBL (Bu et al. 2014)
 - PBL mixing lofts moisture
- Both enabled CRF and larger gfs_alpha can fail to influence storm size, when interaction with convection is weak or absent
 - This may dilute aggregated ensemble statistics

Future work

- Explore more direct capping of K_m based on wind speed
 - Being tested at EMC now
 - May obviate need to hunt for optimal gfs_alpha value
- Examine and analyze a range of gfs_alpha values in retrospective simulations, mindful of physics interactions
 - Hypothesis: CRF-enabled radiation schemes may require smaller α values. This may be why RRTMG hasn't yet been adopted as default operational HWRF
- Understand the direct impact of variable Richardson number (var_ric) in real-data simulations

[end]

(40

Extra slides

(41

Effect of variable critical Ri (var_ric) on semi-idealized storm structure: Preliminary assessment

Executive summary: impact is minor on aquaplanet runs, dwarfed by gfs_alpha influence

PBL height vs. normalized radius: var_ric = 1 vs. 0

• PBL height reported by GFS PBL subroutine is *consistently lower* when variable Ri is permitted.

PBL height vs. normalized radius: var_ric = 1 vs. 0

• Difference in PBL height reported by HWRF, averaged over one diurnal cycle

Radial (shaded) and tangential velocity (contoured)

vs. height and radius