TC inner-core structure and intensification

Robert Rogers, Paul Reasor, Hua Chen, Gopal NOAA Hurricane Research Division

HFIP Telecon April 24, 2013

Background

• Comparisons of composites of airborne Doppler radial passes in multiple cases show statistically significant differences in innercore structure of TCs that are intensifying compared with those that are remaining steady-state (Rogers et al., MWR, 2013, in press)

- Intensifying (IN) 40 radial passes in 8 different TCs
- Steady-state (SS) 53 radial passes in 6 different TCs Best track intensity trace relative to IOP

Symmetric vortex structure and TC intensification

Axisymmetric tangential wind (m/s)

Axisymmetric vorticity (x 10-4/s)

Asymmetric vortex structure and TC intensification

Shear-relative tilt (km) between 2 and 7-km altitude

• negligible difference in tilt magnitude between IN and SS cases

Convective bursts and TC intensification

Number and shear-relative location of convective bursts

Radial distribution of convective bursts (%) and axisymmetric vorticity (shaded, x 10⁻⁴ s⁻¹)

Bursts defined as top 1% of vertical velocity distribution at 8 km altitude (i.e., 5.5 m/s)
IN cases have more bursts, more of them inside RMW compared with SS cases

Questions to consider

•Composites consist of snapshots – Do these structures appear in individual case studies, with observations collected serially?

• Does HWRF capture inner-core structures associated with intensification?

• Can HWRF distinguish between IN and SS cases based on inner-core structure?

Do structures associated with IN appear in individual case studies? <u>Case study: Earl 2010</u>

Axisymmetric tangential wind (m/s)

Do structures associated with IN appear in individual case studies? <u>Vortex structure and convective burst distribution</u>

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution at 8 km) denoted by black dots

- Significant displacement of vortex during first flight
- Vortex nearly aligned by second flight (~12 h later), after RI onset
- Many bursts located inside RMW for most flights, generally downshear and downshear left

Do structures associated with IN appear in individual case studies? Number and radial distribution of convective bursts for Earl and Ophelia

• 80% of convective bursts are at or inside RMW for Earl (IN)

• 30% of convective bursts are at or inside RMW for Ophelia (SS)

Earl 2010: HWRF 3-km baseline run

Model initialized at 18 UTC August 26 (2618 run)

Track

Intensity

Does HWRF capture inner-core structures associated with IN? Axisymmetric structure – tangential wind (m s⁻¹) Doppler <u>HWRF</u>

• Similar magnitudes of peak tangential wind

• Similar radial profiles of tangential wind outside RMW

Axisymmetric structure - Vertical vorticity (x 10⁻⁴ s⁻¹) <u>Doppler</u> <u>HWRF</u>

• Weaker magnitudes of vorticity inside RMW (resolution limitation?)

- Suggestion of vorticity ring in HWRF at 12Z
- Similar decrease in vorticity outside RMW

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

Doppler analysis centered at 23:28 UTC 28 Aug

- Direction of 2-8 km vortex displacement similar between Doppler and HWRF
- Vortex precession seen during 19-20 UTC in HWRF
- Burst area located inside RMW southeast of low-level center, downshear left

Two HWRF runs: initialized at 12 UTC (2612 run) and 18 UTC August 26 (2618 run)

Storm tracks

• tracks similar between two runs

bifurcation point in intensity trace –
 between 00 UTC Aug 30 and 00 UTC Aug 31

Can HWRF distinguish between IN and SS cases based on inner-core structure? <u>Asymmetric structure</u>

Time series of SHIPS-derived 850-200 hPa shear (m/s), 2-5 km and 2-8 km tilt magnitude (km)

2612 HWRF

2618 HWRF

- shear marginally (2 m/s) higher in 2612 run
- both runs show large displacement prior to RI onset, both show continued large displacement at RI onset
- bulk of displacement above 5 km altitude
- vortex becomes nearly aligned several hours after RI onset
- vortex tilt small during bifurcation period, slightly smaller for 2618 run

Can HWRF distinguish between IN and SS cases based on inner-core structure? <u>Asymmetric structure</u>

Time series of 2-5 km and 2-8 km tilt phase (degrees, relative to shear vector)

2618 HWRF

2612 HWRF

both runs show vortex that tilts 45-90 degrees left of shear vector prior to RI
both runs show vortex oscillates between 45 degrees right and left of shear after RI, during bifurcation period

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

2618 HWRF output valid

- both runs show convective bursts near, within eyewall at various times during bifurcation period
- 2618 run shows persistent burst in downshear, downshear-left region inside RMW
- 2612 run has transient burst activity during 5-h period shown here
- RI occurrence tied to distribution of moist convection limited predictability? (Zhang and Tao 2013)

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

O4-09 UTC 28 Aug

2618 HWRF output valid

- both runs show convective bursts near, within eyewall at various times during bifurcation period
- 2618 run shows persistent burst in downshear, downshear-left region inside RMW
- 2612 run has transient burst activity during 5-h period shown here
- RI occurrence tied to distribution of moist convection limited predictability? (Zhang and Tao 2013)

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

2618 HWRF output valid 04-09 UTC 28 Aug

- both runs show convective bursts near, within eyewall at various times during bifurcation period
- 2618 run shows persistent burst in downshear, downshear-left region inside RMW
- 2612 run has transient burst activity during 5-h period shown here
- RI occurrence tied to distribution of moist convection limited predictability? (Zhang and Tao 2013)

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

- both runs show convective bursts near, within eyewall at various times during bifurcation period
- 2618 run shows persistent burst in downshear, downshear-left region inside RMW
- 2612 run has transient burst activity during 5-h period shown here
- RI occurrence tied to distribution of moist convection limited predictability? (Zhang and Tao 2013)

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

• both runs show convective bursts near, within eyewall at various times during bifurcation period

20 15

- 2618 run shows persistent burst in downshear, downshear-left region inside RMW
- 2612 run has transient burst activity during 5-h period shown here
- RI occurrence tied to distribution of moist convection limited predictability? (Zhang and Tao 2013)

Vortex structure and convective burst distribution

Streamlines and wind speed (shaded, m/s) at 2 km (black) and 8 km (white) Convective burst locations (top 1% of w distribution) denoted by red contour

• both runs show convective bursts near, within eyewall at various times during bifurcation period

40

30

20 15

- 2618 run shows persistent burst in downshear, downshear-left region inside RMW
- 2612 run has transient burst activity during 5-h period shown here
- RI occurrence tied to distribution of moist convection limited predictability? (Zhang and Tao 2013)

Ongoing/future work

• continue analysis of Earl aircraft observations, HWRF simulations

- symmetric and asymmetric structure
- convective statistics
- thermodynamic properties

can we explain reason for transience of convective bursts for 2612 run vs. 2618 run?

• environmental, vortex structure?

 predictability limit due to stochastic nature of moist convection?

expand HWRF analysis to multiple cases for compositing

Extra slides

TC inner-core structure and intensification

Summary schematic

