DTC Update on Hurricane Supplemental Projects

Evan Kalina^{1,2,3} Man Zhang^{1,2,3} Grant Firl, Mrinal Biswas, Mike Ek^{3,4}

August 19, 2020

¹CIRES ²NOAA/GSL ³DTC ⁴NCAR

Outline

- HAFS Infrastructure Evan Kalina
- HWRF Physics in HAFS Man Zhang

HSUP Resources \$135 K (PoP: Jul 2019-Sep 2021)

HAFS Infrastructure PI: Evan Kalina

Deliverables:

Establish an authoritative UFS workflows repository in GitHub with CROW code as the starting point (HU 12/2019)

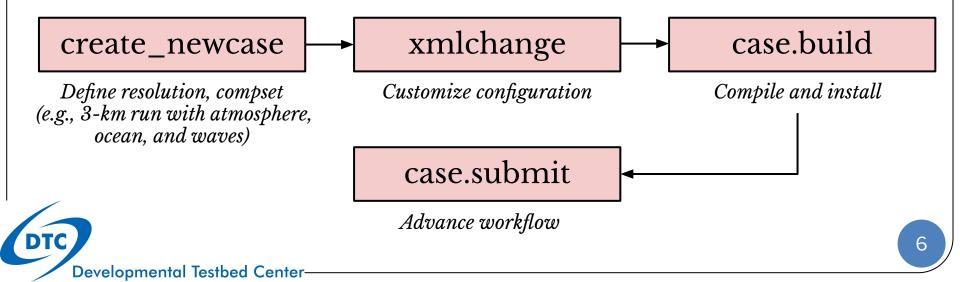
Review the design and implementation of CROW with community partners (HU 06/2020)

- Demonstrate that CROW or a CROW alternative can interact with the Common Infrastructure for Modeling the Earth (CIME) for building and running simple forecast model configurations (HU 06/2020 → 09/2020)
- Plan and document the design of the transition-to-operations workflow for the UFS hurricane application based on collected requirements and review with technical and scientific partners (HU 09/2020 \rightarrow 12/2020)
- Demonstrate a workflow for a HAFS configuration that is suitable for simplified benchmarking that is part of a transition to operations, including the ability to do cycling without full DA (HU 06/2021 \rightarrow 09/2021)

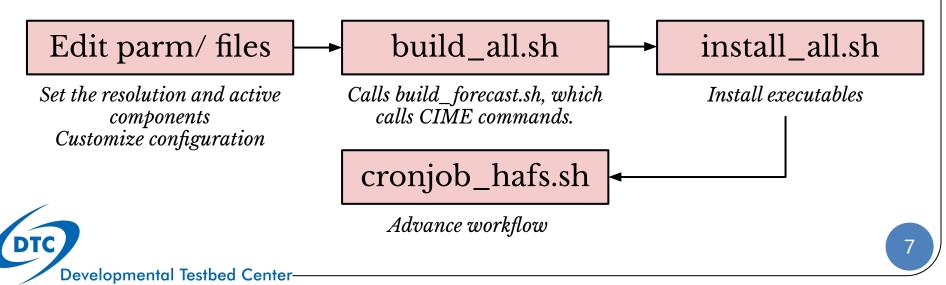
CROW review report

- Shared with EMC partners, Hurricane app leads on June 8.
- Posted to the DTC website on June 24: LINK
- One anticipated outcome of report is to facilitate a decision by EMC on whether to use CROW in HAFS
 - Suggest decision by September 1, preferably sooner.
 - A delayed decision will make it harder to complete the next milestone:

"Demonstrate that CROW or a CROW alternative can interact with CIME for building and running simple forecast model configurations."


Motivation for adding CIME to HAFS

- Make HAFS workflow even more friendly to users, developers
 - Add hierarchical testing capabilities
 - Data models: Replace an active model component with a canned dataset
 - Make it easier to port HAFS to new platforms
- Look for opportunities to unify with other UFS applications
 - UFS Medium-Range Weather App public release uses CIME


Two design options for CIME in HAFS

- Option 1: CIME replaces the current HAFS workflow with something similar to the UFS MRW application workflow
 - Users would directly run the CIME commands to configure, build, and run HAFS, including the VI and DA steps.
 - Instead of parm/ files, the xmlchange command would be used to customize the configuration.
 - Steps run by the user:

Two design options for CIME in HAFS

- Option 2: CIME is driven by the current HAFS workflow.
 - build_forecast.sh calls CIME
 - CIME reads the files in parm/ to configure the forecast
 - CIME only builds the forecast executable
 - HAFS workflow submits the CIME-built forecast executable
- Goal: Allow user to interact with CIME directly if they want
- Otherwise, the user runs the existing HAFS build/workflow:

HWRF Physics in HAFS

Man Zhang, Mrinal Biswas, Grant Firl, Ligia Bernardet, Mike Ek, Dom Heinzeller

EMC Collaborators: Chunxi Zhang, Bin Liu, Eric Aligo Federal Manager: Avichal Mehra

Deliverables:

- HWRF F-A, saSAS, and RRTMG parameterizations in CCPP (Jan 2020)
- HWRF Physics Suite Test Plan (Apr 2020)
- Successful HAFS v0.a runs using the HWRF suite (Apr 2020)
- DTC HWRF physics test on Orion (Mid-Jun 2020)
- Transitioned hwrf-physics branch from NCAR to hafs-community Github (Jun 2020)
- Presented results in the first UFS Users' Workshop (July 2020)
- Final report on test results (Aug 2020)-coming soon

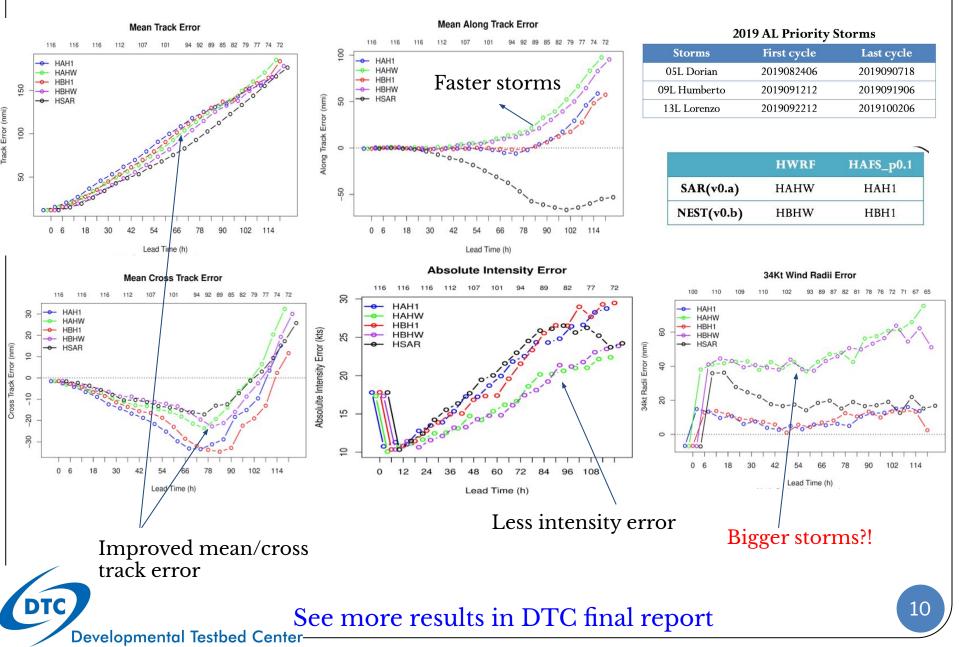
HSUP Resources at NCAR

\$86K (PoP: Aug 2019-July 2021)

Developmental Testbed Center

HSUP Resources at GSL

\$62 K (PoP: Aug 2019-Jul 2021)


Overview of HWRF Suites in CCPP

Scheme/Suite	HWRF	HAFS_p0.1	HSAR
Exp.	НАНW/НВНW	НАН1/НВН1	HSAR
Microphysics	Ferrier-Aligo with separate cloud species advection	GFDL	GFDL
PBL	K-EDMF unified w/ HWRF namelist settings	K-EDMF unified w/ HWRF namelist settings	k-EDMF w/ HWRF namelist settings
Deep/shallow CU	saSAS with HWRF settings on in all domains	saSAS with GFS settings on in all domains	off
Radiation	HWRF-RRTMG	GFS-RRTMG	GFS-RRTMG
Surface layer	GFDL	GFS w/ HWRF namelist settings	GFS w/HWRF namelist settings
LSM	HWRF-Noah	GFS-Noah	GFS-Noah
Orographic GWD	off	off	on
Non-stationary GWD	off	off	off
Ozone	NRL_2015	NRL_2015	NRL_2015
Water Vapor	NRL_2015	NRL_2015	NRL_2015

- The implementation of *HWRF suite* into HAFS via CCPP is a collaborative effort between **DTC**, **GSL** and **EMC**
- *HAFS_p0.1 suite:* UFS MRW physics suite with Hurricane specific modifications
- *HSAR suite*: the 2019 EMC HAFS real time physics suite (using an old code base)
- Yellow highlights indicate aspects that differ between the suites

DTC

Overall Performance

HAFS Activities at DTC

HWRF Physics T&E in HAFS

Results of the first exercise with HWRF physics in HAFS are promising:

- Better mean track forecast than HAFS_p0.1 suite, especially cross track error in both SAR and globnest configuration
- Improved intensity forecasts compared to HAFS_p0.1 and HSAR
- Excessive size of the storms
- EMC is conducting additional testing/tuning in a larger and more diverse sample size to realize the benefits of this suite
- Shaowu Bao of CCU is investigating the UPP GOES-R results of HWRF physics test through DTC visitor project

HAFS Activities at DTC

HWRF Physics R&D in HAFS

CCPP team and EMC takes over the job of debugging the HWRF physics to get them into the master. *dtc/hafs-develop* branch was created at NCAR Github repositories with several upgrade and bug fix made by DTC and EMC:

- *fv_regional_bc* module: initialize FA cloud species and add a cloud physics auto conversion routine for FA mp scheme
- Relax the ntrac> ntracers limitation in *external_ic* module
- Fix a dimension bug in *delz* in subroutine *neg_adj2*
- Further optimize the use of FA cloud species in *fv_dynamic* module
- Fix a bug in CCPP hwrfsas

A new PR to HAFS compatible with the latest UFS is on the way