

GSD HAFS Project Update

26 June 2019

Jeff Beck^{1,2}, Gerard Ketefian^{1,3}, Curtis Alexander¹

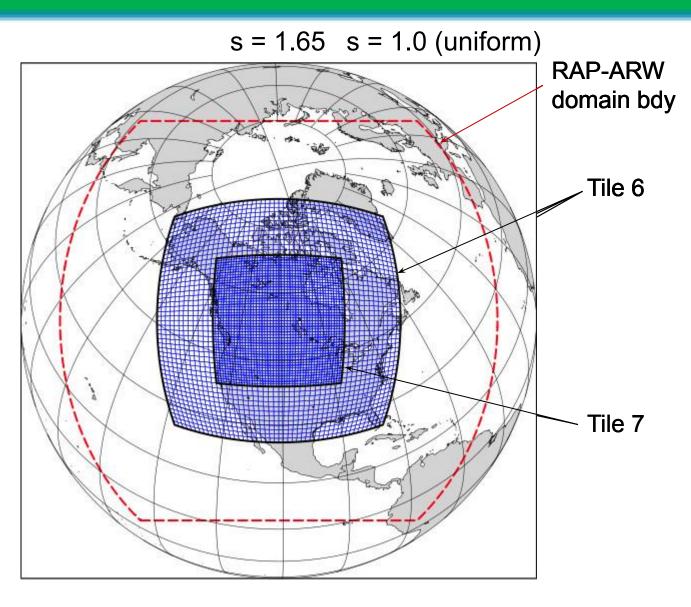
¹NOAA/ESRL/GLOBAL SYSTEMS DIVISION

Boulder, CO

²Collaborative Institute for Research in the Atmosphere (CIRA)

Fort Collins, CO

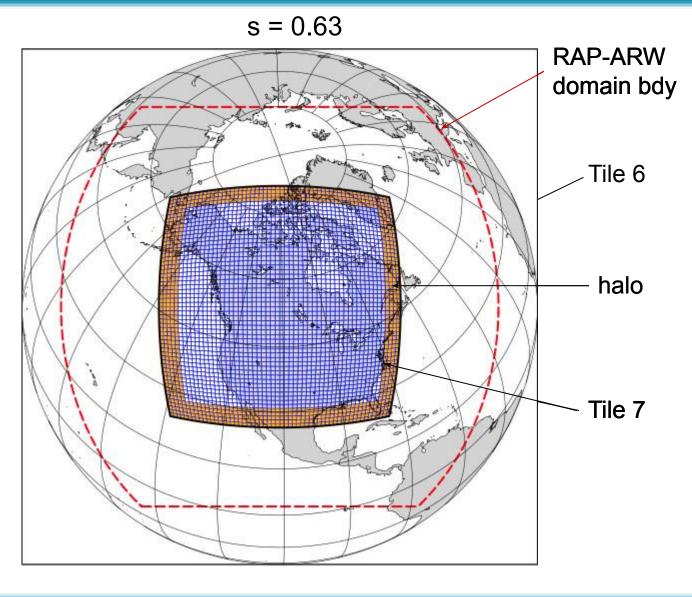
³Collaborative Institute for Research in Environmental Sciences (CIRES)


Boulder, CO

The Global FV3 Cubed Sphere Grid: Introduction

- Consists of 6 tiles of a cube projected onto a sphere
- Uses a gnomonic projection in which grid lines coincide with great circles
- Has stretching capability (via Schmidt factor, s) to compress (expand) tile 6 to increase (decrease) resolution
 - $s < 1 \Rightarrow$ tile 6 stretched (coarser grid)
 - $s = 1 \Rightarrow$ no stretching (tile 6 is "uniform")
 - $s > 1 \Rightarrow$ tile 6 compressed (finer grid)
- Nesting capability can include a nested grid ("tile" 7) within tile 6 that obtains its lateral BCs from tile 6 and passes information back to tile 6 (i.e. 2-way nesting)

 \bigcirc



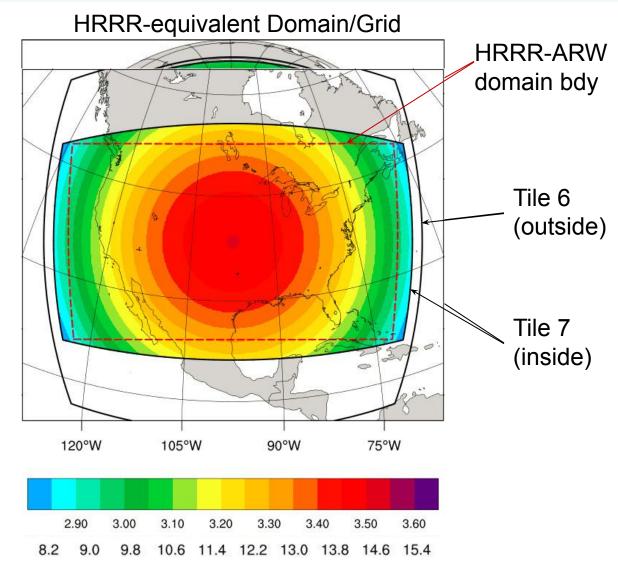
Modifications by EMC to Global FV3 to Obtain SAR Grid

- Use the nesting capability of the global FV3 to generate a standalone regional grid ("tile" 7)
 - Tiles 1-6 serve as the global "parent" grid during grid generation
 - Forecast performed only on tile 7 (as opposed to tiles 1-6 for a global forecast or tiles 1-7 for a global + nest forecast)
- Modify global FV3 code to include a region of cells around tile 7 (the halo) that is used to feed BCs to tile 7
 - BCs interpolated to halo from output of external model (e.g. GFS, RAP)
- Still allow for stretching by shrinking/expansion of tile
 7 during grid generation step (via Schmidt factor)
 - This is necessary for larger domains (e.g. RAP) that do not fit within one tile of the uniform global grid [note: crossing of tile boundaries is not (yet?) allowed in global FV3]

RAP- and HRRR-Equivalent Domains in SAR-FV3: Initial Attempt

RAP-equivalent domain:

- WRF-ARW's RAP domain is much larger than a "uniform" (s = 1) FV3 global tile
 - Need to expand tiles 6 and 7 of FV3 global parent grid to fit tile 7 within WRF-ARW's RAP domain
 - This requires setting Schmidt factor s = 0.63
- This results in a RAP-equivalent domain/grid that has the following cell size stats:
 - min = 7.92 km; max = 15.28 km (max/min = 1.92)
 - median = 11.18 km; mean = 11.44 km
- Want cell size as uniform as possible across domain because:
 - Time step determined by smallest cell

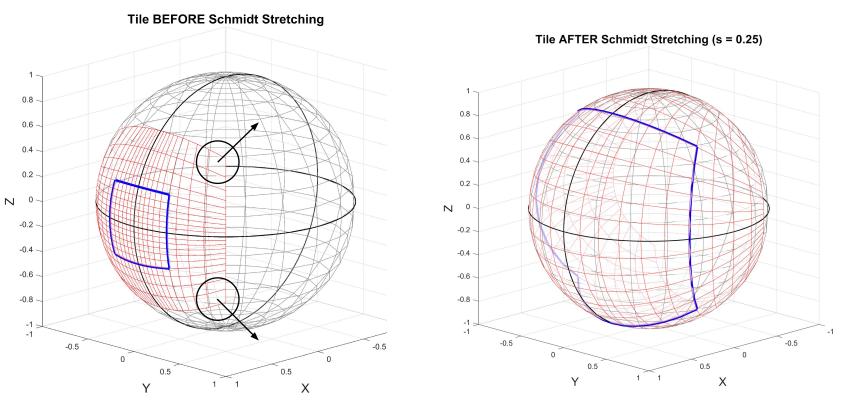

 \bigcirc

- Physics parameterizations may not be scale-aware (don't want to venture into "gray zone")
- This RAP-equivalent domain not sufficiently uniform!

HRRR-equivalent domain:

HAFS

• Does not suffer as much cell size variation due to its smaller extent, but can still be improved

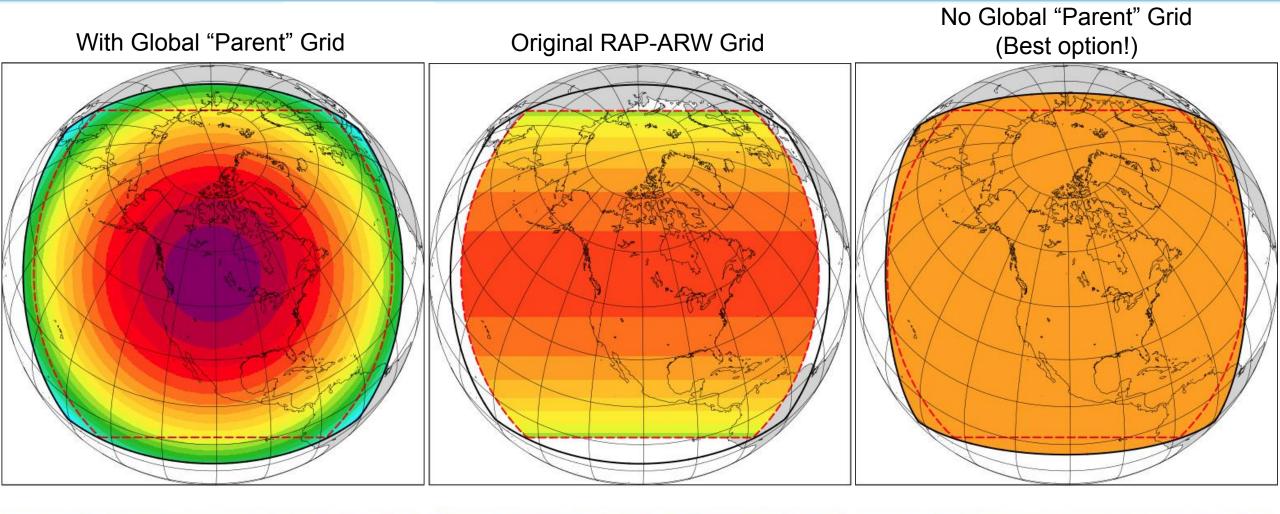

Modification of the Gnomonic Grid

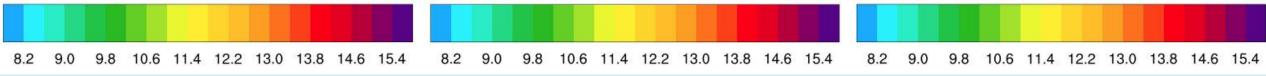
Through collaboration with EMC (Jim Purser):

- Concentrate model coordinates (great circles) near center of tile six to improve uniformity after stretching
- Added two plotting parameters (alpha and kappa) to the generation of the gnomonic grid
- Flares the corners of the grid to reduce grid variability

 \bigcirc

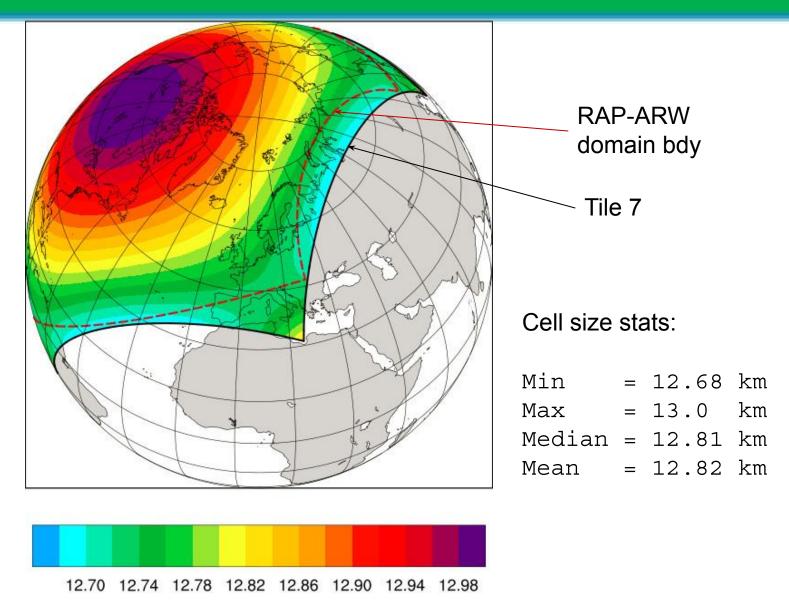
HAFS




Blue represents the outline of the SAR grid (tile seven) with the sixth tile of the global FV3 in red

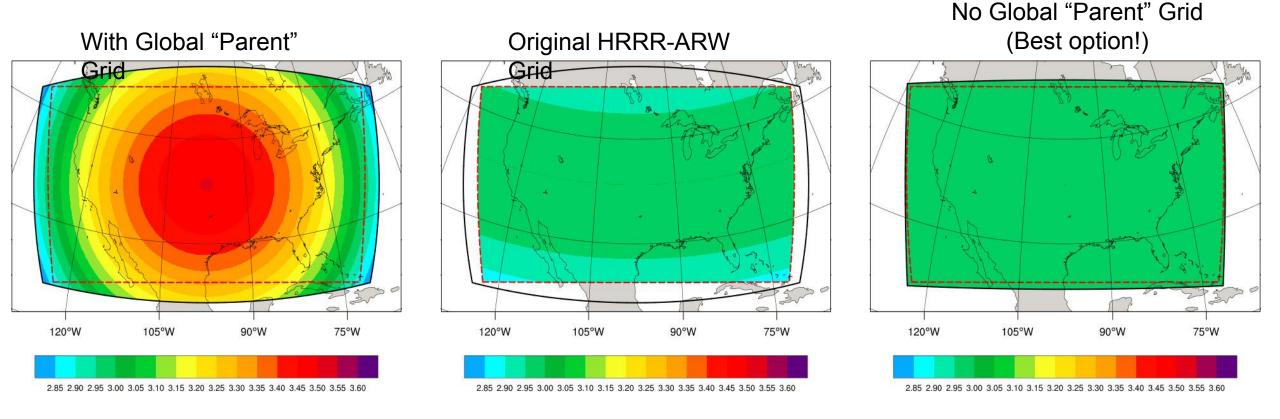
igodol

Comparison of RAP/RAP-equivalent Grids

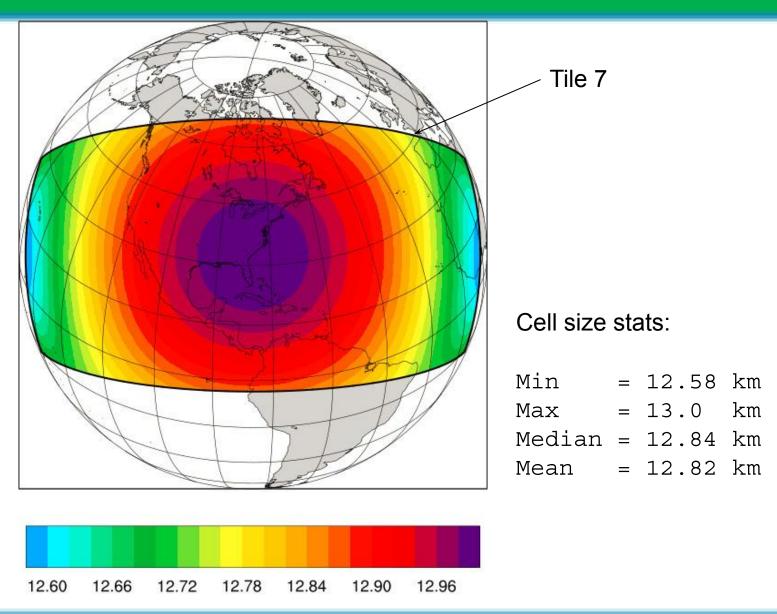


26 June 2019 • 5

Flaring of Edges for the RAP-equivalent SAR-FV3 Domain

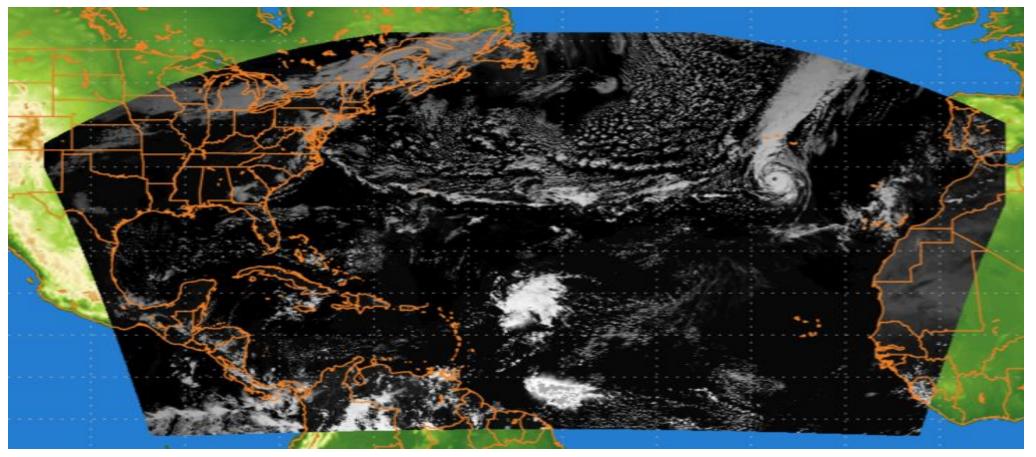

26 June 2019 • 6

igodot


Comparison of HRRR/HRRR-equivalent Grids

igodot

First Attempt at Double-Basin Hurricane Domain/Grid



 \bigcirc

HFIP Summer Demo Experiments:

Nested 3-km FV3 GFS

- HAFS v0.A A FV3 SAR configuration, analogous to the CAM FV3 SAR configuration, but for TC regions of interest. GFS physics and RAP/HRRR (continental CAM physics)
- 2. HAFS v0.B A FV3 nest within the FV3 global model (as shown above)

Image courtesy of Andrew Hazelton (NOAA/AOML/HRD).

26 June 2019 • 9

- FV3 as implemented by EMC currently using the GFS physics, which:
 - Has not been developed or tuned for convection-permitting resolutions
 - \Rightarrow Insufficient for the SAR-FV3 CAM applications
- GSD (i.e. RAP/HRRR) physics:
 - Specifically designed for convection-permitting resolutions
 - Over a decade of development & testing
 - \Rightarrow Hence retain and port to the SAR-FV3
- The strategic goals of NGGPS include leveraging US research community expertise for physics development as well, with funds already allocated to that end

Parameterization	RAP/HRRR Suite
Microphysics	AA, radiation-coupled Thompson
LSM	RUC (9 level)
PBL	SA-MYNN
Radiation	RRTMG
Cumulus	SA-Grell/Freitas (GF)

 \bigcirc

- chgres EMC's software package to generate IC/BCs for the SAR-FV3 running the GFS physics suite
- Collaboration started with NSSL and EMC to modify chgres to generate SAR IC/BCs from RAP grib2
 output
- Generated tables to map from RAP (or other external model) to FV3 variables for multiple physics options. Table format:

external_model_var(1)	FV3_model_var(1)	<pre>missing_var_method(1) missing_var_method(2) missing_var_method(3)</pre>	fill_value(1)
external_model_var(2)	FV3_model_var(2)		fill_value(2)
external_model_var(3)	FV3_model_var(3)		fill_value(3)
<pre> external_model_var(N)</pre>	FV3_model_var(N)	<pre>missing_var_method(N)</pre>	fill_value_var(N)

- missing_var_method(j) can be "stop", "skip", or "set_to_fill_value"
- fill_value(j) is the value to use if missing_var_method(j) is set to "set_to_fill_value".
- Code is in development with plans to implement by the end of the month

 \bigcirc

SAR-FV3 Community Workflow

Incorporation of all model components to facilitate SAR-FV3 retrospective and real-time simulations:

- ROCOTO-based XML workflow that calls individual shell scripts for each component of the simulation:
 - Generate the grid (pre-processing utilities)
 - Retrieve archived data and generate IC/BCs
 - Prepare the work directory and stage files
 - Run the SAR-FV3
 - Post-process the results (NetCDF \rightarrow grib2)
- Being designed to work on multiple supercomputing platforms (so far on NOAA HPC in Boulder (Theia, Jet) and in DC (WCOSS), OU, and NCAR)
- Features user-customizable configure script with options to set date, time, forecast length, output interval, choose pre-defined domains, etc.
- Will eventually be able to use FV3GFS, GFS-GSM, RAP/HRRR, or NAM data for IC/BCs
- Can run with CCPP for either the GFS or GSD physics suites

- Intended to be as flexible as possible for users across both research and academic communities
- Documentation is being developed concurrently through use of Sphinx (NCAR/DTC)

<workflow realtime="F" scheduler="&SCHED;" cyclethrottle="20">

<cycledef>00 &HH; ⅅ &MM; &YYYY; *</cycledef>

log> <cyclestr>&LOG_DIR;/FV3_@Y@m@d@H.log</cyclestr> </log>

<task name="make_grid_orog" maxtries="3">

<command>&USHDIR;/make_grid_orog.sh</command> <nodes>&PROC_MAKE_GRID_OROG;</nodes> <jobname>make_grid_orog</jobname> <join><cyclestr>&LOG_DIR;/make_grid_orog_@Y@m@d@H.log</cyclestr></join>

</task>

<task name="get_GFS_files" maxtries="3">

<command>&USHDIR;/get_GFS_files.sh</command> <nodes>&PROC_GET_GFS_FILES;</nodes> <jobname>get_GFS_files</jobname> <join><cyclestr>&LOG_DIR;/get_GFS_files_@Y@m@d@H.log</cyclestr></join>

<dependency> <taskdep task="make_grid_orog"/> </dependency>

</task>

