
Jonathan Martinez1,2
Benjamin Trabing1

1Cooperative Institute for Research in the Atmosphere
2National Hurricane Center

STS Nicole @ 0320 UTC 08 Nov 2022
A 3-Part Series

Part I – Track Verification

Part II – Intensity Verification

Part III – Wind Radii Verification (R34 analyses; R50 and R64 highlights)
Downstream Impacts of HAFS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Model(s) to Replace</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVCN</td>
<td>Track Variable Consensus</td>
<td>HWRF (+HMON in EPAC)</td>
</tr>
<tr>
<td>IVCN</td>
<td>Intensity Variable Consensus</td>
<td>HWRF+HMON</td>
</tr>
<tr>
<td>RVCN</td>
<td>Wind Radii Variable Consensus</td>
<td>HWRF</td>
</tr>
<tr>
<td>HCCA</td>
<td>HFIP Corrected Consensus Approach Model</td>
<td>HWRF+HMON</td>
</tr>
<tr>
<td>DTOPS</td>
<td>Deterministic to Probabilistic Statistical Model</td>
<td>HWRF</td>
</tr>
<tr>
<td>NNIC</td>
<td>Neural Network Intensity Combination Model</td>
<td>HWRF</td>
</tr>
</tbody>
</table>
Verification Design

• Homogeneous Verification – a prediction from each model must be present at a given lead time

• Three-year evaluation period from 2020 through 2022
 o North Atlantic – 66 TCs
 o Eastern Pacific – 59 TCs
 o Last TC in North Atlantic – AL142022
 o Last TC in Eastern Pacific – EP192022

• Operational interpolator offsets implemented for all models
 o Optimal interpolator offsets determined for HAFS at 06/30 h
Part I – Track Verification
Track verification for consensus models

North Atlantic basin (NATL) – 6 models with only HWRF to be replaced
- TVCN – AVNI, EGRI, HWFI, EMHI, CTCI, EMNI
- TVCA – Replace HWFI with HFAI in TVCA (HAFS-A test)
- TVCS – Replace HWFI with HFSI in TVCA (HAFS-S test)

East Pacific basin (EPAC) – 7 models with HWRF + HMON to be replaced
- TVCN – AVNI, EGRI, HWFI, EMHI, CTCI, EMNI, HMNI
- TVCB – Replace HWFI and HMNI with HFAI and HFSI (HAFS test)
Track verification for consensus models

North Atlantic

- Mean Absolute Error

East Pacific

- Mean Absolute Error

- HAFS models improve track skill of TVCN in NATL by ~5% at all lead times

- HAFS models improve track skill of TVCN in EPAC most at days 4–5 (~5%)
Track verification for consensus models

North Atlantic

Along-track Bias

- HAFS models slightly reduce along/cross-track biases in NATL and EPAC at ~all lead times
- Note right-of-track biases at early lead times potentially offsetting predominant left-of-track model biases

East Pacific

Along-track Bias

Cross-track Bias

Cross-track Bias
HCCA NATL track verification

- Leave-one-out training method – All TCs included in training data except the one that is being forecasted
- H3AI/H3SI – merge HWRF/HMON retrospectives with HAFS-A/HAFS-S
 o Assumes the models have similar error characteristics and behavior
- H4AI/H4SI – remove HWRF/HMON and add HAFS-A/HAFS-S from 2020–2021
HCCA NATL track verification

- Leave-one-out training method – All TCs included in training data except the one that is being forecasted
- H3AI/H3SI – merge HWRF/HMON retrospectives with HAFS-A/HAFS-S
 - Assumes the models have similar error characteristics and behavior
- H4AI/H4SI – remove HWRF/HMON and add HAFS-A/HAFS-S from 2020–2021

Replacing HWRF/HMON with HAFS-A/HAFS-S in HCCA improves NATL track skill by 6–12%
 - Skill comes at expense of consistency due to small HAFS sample relative to HWRF/HMON
Part I – Track verification summary

NATL Summary
• Replacing HWRF with either HAFS-A or HAFS-S improves track skill of TVCN by ~5% at all lead times
• HAFS slightly reduces the along/cross-track biases of TVCN at ~all lead times
• HAFS improvement in track skill translates to improvements in HCCA track skill of 6–12%

EPAC Summary
• Replacing HWRF/HMON with HAFS-A/HAFS-S improves track skill of TVCN most at days 4–5 (~5%)
• HAFS reduces along/cross-track biases at all lead times
 o Right-of-track bias might help offset predominant left-of-track biases
Part II – Intensity Verification
Intensity verification for consensus models

Variable consensus with minimum 2 members

North Atlantic basin (NATL) and Eastern Pacific basin (EPAC)

- IVCN – DSHP, LGEM, HWFI, HMNI, CTCI
- IVCB – Replace HWFI and HMNI with HFAI and HFSI (HAFS test)
Intensity verification for individual models

North Atlantic

<table>
<thead>
<tr>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity Mean Absolute Error (kt)</td>
</tr>
</tbody>
</table>

- HAFS models reduce intensity skill of IVCN in NATL at days 2–5 up to 10%

East Pacific

<table>
<thead>
<tr>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity Mean Absolute Error (kt)</td>
</tr>
</tbody>
</table>

- HAFS models improve intensity skill of IVCN in EPAC by 2% at days 1–4; greater improvements at days 4–5 (2–14%)

- *Note the dip in skill improvements near day 3 was also present in TVCN*
Intensity verification for individual models

North Atlantic

Intensity Bias

East Pacific

Intensity Bias

- HAFS models reduce low-intensity bias in both NATL and EPAC at ~all lead times
HCCA intensity verification

• Leave-one-out training method – All TCs included in training data except the one that is being forecasted

• H3AI/H3SI – merge HWRF/HMON retrospectives with HAFS-A/HAFS-S
 ○ Assumes the models have similar error characteristics and behavior

• H4AI/H4SI – remove HWRF/HMON and add HAFS-A/HAFS-S from 2020–2021
HCCA intensity verification

- Leave-one-out training method – All TCs included in training data except the one that is being forecasted
- H3AI/H3SI – merge HWRF/HMON retrospectives with HAFS-A/HAFS-S
 - Assumes the models have similar error characteristics and behavior
- H4AI/H4SI – remove HWRF/HMON and add HAFS-A/HAFS-S from 2020–2021

- Replacing HWRF/HMON with HAFS-A/HAFS-S in HCCA generally reduces NATL intensity skill; some minor improvements at days 0–2
 - All iterations show relative minimum in skill near day 4
Part II – Intensity verification summary

NATL Summary

• Replacing HWRF/HMON with HAFS models reduces intensity skill of IVCN at days 2–5 up to 10%
• HAFS models reduce low-intensity bias in IVCN at ~all lead times
• Reduced intensity skill from HAFS models generally translates to reduced HCCA intensity skill

EPAC Summary

• Replacing HWRF/HMON with HAFS models improves intensity skill of IVCN by 2% at days 1–4; greater improvements at days 4–5 (2–14%)
• HAFS models reduce low-intensity bias in IVCN at ~all lead times
Part III – Wind Radii Verification
Wind radii verification for consensus models

Variable consensus with minimum 1 member
Different techs given different interpolator offsets (06/18) compared to track/intensity

North Atlantic basin (NATL) and Eastern Pacific basin (EPAC)
- RVCN – AHNI, HHFI, EHHI, CHCI
- RVC2 – Replace HHFI with HHAI (HAFS-A test)
- RVC3 – Replace HHFI with HHSI (HAFS-S test)
R34 verification for consensus models

North Atlantic

Average R34 Error

- HAFS-A has relatively neutral impact on RVCN R34 skill in NATL; HAFS-S reduces R34 skill in NATL by 2–8%

- HAFS models improve RVCN R34 skill in EPAC by ~2–5% at days 0–3

East Pacific

Average R34 Error

Relative Skill

Relative Skill
R34 verification for consensus models

- HAFS-A has comparable, small R34 bias in RVCN at days 3–5; HAFS-S amplifies small bias of RVCN at all lead times in NATL

- HAFS models produce R34 small bias in RVCN relative to current large bias at all lead times in EPAC
Wind radii verification summary

NATL Summary
• Replacing HWRF with either HAFS-A or HAFS-S in RVCN reduces wind radii skill in range of ~2–10% for all lead times
• HAFS models amplify small wind radii biases at all lead times

EPAC Summary
• Replacing HWRF with either HAFS-A or HAFS-S in RVCN improves wind radii skill in range of ~2–15% at most lead times
• HAFS models produce R34 small bias relative to large bias in RVCN; amplify R50 small biases; and reduce R64 biases
Towards a (more) Comprehensive HAFS Evaluation

• Consider stratifying the forecast verification into various composites
 o Weak vs. strong TCs (set an intensity threshold)
 o Regional verifications (e.g., main development region vs. full NATL basin)
 o Intensity forecasts with/without aircraft observations
 o Rapid intensification (RI) vs. non-RI cases

• Identify potential outlier cases that might be contributing to a significant reduction in skill from HAFS
 o Diagnose source(s) of errors from model fields (contingent upon availability)
 o Assessing median absolute error would relax sensitivity to outliers

• Diagnose downstream implications of replacing HWRF/HMON with HAFS
 o Additional testing required for HCCA
 o Impacts on DTOPS, HCCA, and NNIC need to be assessed
Greatest improvement from HAFS noted for track consensus
 - HAFS improves track skill of TVCN by ~5% at all lead times
 - HAFS track skill translates into 6–12% improvements for HCCA in NATL

HAFS has basin-dependent impacts on intensity consensus
 - HAFS reduces intensity skill of IVCN in NATL at days 2–5 up to ~10%
 - HAFS improves intensity skill of IVCN in EPAC at days 1–4 by ~2%; greater improvements at days 4–5 (2–14%)

HAFS has basin-dependent impacts on wind radii skill
 - HAFS reduces wind radii skill of RVCN in NATL in range of ~2–10% for all lead times
 - HAFS improves wind radii skill of RVCN in EPAC in range of ~2–15% at most lead times
Extra Slides
Track verification for individual models

North Atlantic
Mean Absolute Error

• Consistent improvement of track skill for HAFS at ~all lead times (0–14%)

East Pacific
Mean Absolute Error

• Track skill improvement in NATL largest at days 1–3

• Bimodal track skill improvement in EPAC greatest at days 1–2 and 4–5

Relative Skill

Relative Skill
Track verification for individual models

North Atlantic

Along-track Bias

- HAFS slow bias in NATL comparable to HWRF
- HAFS-A growing left-of-track bias in NATL at days 2–5

East Pacific

Along-track Bias

- HAFS slow bias in EPAC between days 1–3 comparable to HWRF/HMON
- HAFS cross-track bias in EPAC improved at all lead times

Cross-track Bias

- HAFS slow bias in NATL comparable to HWRF
- HAFS-A growing left-of-track bias in NATL at days 2–5
- HAFS slow bias in EPAC between days 1–3 comparable to HWRF/HMON
- HAFS cross-track bias in EPAC improved at all lead times
R50 verification for consensus models

North Atlantic

Average R50 Error

East Pacific

Average R50 Error

- HAFS models reduce RVCN R50 skill in NATL by ~4–8% at most lead times

- HAFS models improve RVCN R50 skill in EPAC by ~5–10% at days 2–5
R50 verification for consensus models

- HAFS models amplify small R50 bias in RVCN at all lead times in NATL and EPAC
R64 verification for consensus models

North Atlantic

Average R64 Error

- Average R64 Error for different models over forecast hours (nmi).

- HAFS models reduce RVCN R64 skill in NATL by ~5–15% at all lead times.

- HAFS models improve RVCN R64 skill in EPAC by ~10–20% at most lead times.

- *Note the small sample sizes*

East Pacific

Average R64 Error

- Average R64 Error for different models over forecast hours (nmi).

Relative Skill

- Relative skill for different models over forecast hours (%).

- HAFS models reduce RVCN R64 skill in NATL by ~5–15% at all lead times.

- HAFS models improve RVCN R64 skill in EPAC by ~10–20% at most lead times.

- *Note the small sample sizes*
R64 verification for consensus models

North Atlantic

Average R64 Bias

- HAFS models amplify small R64 bias in RVCN at all lead times in NATL

East Pacific

Average R64 Bias

- HAFS models have less R64 biases in RVCN at days 1–5 in EPAC