Operational Storm Surge Modeling Update

HFIP Annual Meeting
November 7th, 2022
NHC Storm Surge Unit

Laura Alaka
laura.alaka@noaa.gov

Andrew Penny
andrew.penny@noaa.gov
Introduction to Probabilistic Storm Surge

- P-Surge is based on an ensemble of Sea, Lake, and Overland Surge from Hurricane (SLOSH) model runs
 - SLOSH: numerical-dynamic tropical storm surge model
 - SLOSH requires bathymetry and is applied to a ‘basin’
 - SLOSH requires meteorological driving forces: “Wind model is just as important– if not more so– as a surge model” (Jelesnianski et al. 1992)

- P-Surge ensemble incorporates uncertainty using a statistical method based on NHC historical errors of:
 - Cross track (landfall location, # members varies) attempts to encompass 90% of cross track uncertainty
 - Along track (forward speed, 7 members)
 - Intensity (3 members)
 - Storm size (RMW, 3 members)

Ian (AL092022) 2022092600 P-Surge ensemble tracks

hurricanes.gov/surge

@NHC_Surge
Hurricane Ian – 9/25 11pm, SS Watch issued
2022092600

Intensity

P-Surge Ensemble
NHC OFFICIAL (OFCL)

RMW

hurricanes.gov/surge
Hurricane Ian – 9/26 5pm, SS Warning issued
2022092618

Deterministic Storm Surge

Probabilistic Storm Surge: e10

OFCL Track

Storm Surge (ft above ground)
Hurricane Ian – Preliminary USGS HWMs

- Highlights sharp storm surge gradient relative to the track and RMW, especially noticeable from Sanibel Island to Captiva

RMW = 20 nm

Storm Surge (ft above ground)

Does not show peak inundation*
P-Surge Retrospective Runs

- 25 storms between 2008-2020: Spans the period of USGS pressure sensors

- Evaluation Methodology:
 - Determine landfall advisory
 - Determine advisory when the 12-, 24-, 36-, 48-, 60-, 72-hr forecast points first came closest to the landfall point (the 60-hr was approximated)

- Evaluated the >3, >6, >9 ft NAVD88 probability fields from P-Surge
Forecast/Observation Pairing
24 hours prior to Hurricane Laura’s landfall

Lake Charles NOAA tide station
Observation: 5.39 ft NAVD88
Forecast: 69%

LACAM27067 USGS pressure sensor
Observation: 10.05 ft NAVD88
Forecast: 92%
Improved RMW Forecasts
P-Surge v2.7 vs v2.9

ROC Curve
- Make a contingency table for each threshold (10%, 20%, 30%, ...)
- Calculate POD/FAR and plot each pair as a point on the curve

Higher Area Under Curve (AUC) for v2.9, i.e. increased skillfulness

[Graphs showing ROC curves for v2.7 and v2.9 with AUC values for different time horizons.]
Improved RMW Forecasts
P-Surge v2.7 vs v2.9

Threat Score and Brier Score

- v2.9 demonstrates superior performance compared to v2.7

Threat Score

Hits / (Hits + Misses + False Alarms)

Brier Score

“What is the magnitude of the probability forecast errors?”

Brier Score: Probability of surge exceeding 6 ft NAVD88

- perfect score=1
- perfect score=0

• v2.9 demonstrates superior performance compared to v2.7

hurricanes.gov/surge
Future Improvements
P-Surge v3.0 (early 2023)

Manning-N
(non-uniform bottom slip coefficients)
Hurricane Laura 24 h prior to landfall

Threat Area

Lake Charles NOAA tide station,
Observation: 5.39 ft NAVD88
Forecast (Non Manning): 69%
Forecast (Manning-N): 44%

LACAM27067 USGS pressure sensor,
Observation: 10.05 ft NAVD88
Forecast (Non Manning): 92%
Forecast (Manning-N): 90%

- Manning-N reduces the inland extent of the Threat Area
- for all storms, the v3.0 Threat Area with Manning-N is smaller than v2.7, while retaining skill
Future Improvements

P-Surge v3.0 (early 2023)

Manning-N
(non-uniform bottom slip coefficients)

Threat Score

Hits / (Hits + Misses + False Alarms)

- *perfect score=1*

Brier Score

“What is the magnitude of the probability forecast errors?”

```
BrierScore: Probability of surge exceeding 6 ft NAVD88
```

- v2.9 and v3.0 have comparable skill
Landfall Adjustment for Intensity/RMW

- Interpolation of intensity/RMW at landfall using post-landfall forecast points leads to a low bias for intensity and a large bias for RMW.

- Keeping the intensity/RMW constant (green) reduces the biases, and improves run-to-run consistency.

Future Improvements
P-Surge v3.0 (early 2023)
Future Improvements

P-Surge v3.0 (early 2023)

- Initial model development and evaluation of a 2nd generation wave model to couple with SLOSH
- Selected the Great Lakes Wave Model and began adding wave physics parameterizations
- Model uses simplified physics, but is cheaper computationally than SWAN or WW3
- More suitable to couple with SLOSH than SWAN
- except for storm motion, there are currently no wind field asymmetries in P-Surge/SLOSH
- use a 2D wind field for input wind forcing instead of the parametric wind model
- explore whether ETSS can be used to specify the solution for the background environment away from the tropical cyclone (instead of the tide-only solution)
Summary

- probabilistic guidance was crucial to help identify the areas at greatest risk for storm surge during Hurricane Ian
- a 25-storm verification data set is used to evaluate P-Surge upgrades
- recent upgrades to the input RMW forecasts have helped improve P-Surge forecasts

Future Work: V3.0 (early 2023)
- adopt non-uniform Manning-N bottom slip coefficients to reduce the inland extent of storm surge inundation
- incorporate PR/USVI SLOSH grids and couple with a simple wave model
- correct for the low-bias in intensity (and high-bias in RMW) at landfall (due to interpolation)

Future Work: Down the road….
- specify a 2D wind field for the input wind forcing in P-Surge/SLOSH to handle wind asymmetries
- incorporate dynamic uncertainty information (track, intensity, size, and structure) when generating the P-Surge ensemble