Developing the Hurricane Analysis and Forecast System: Future Priorities After IOC Implementation

Xuejin Zhang\(^1\), Zhan Zhang\(^2\), and Avichal Mehra\(^2\)

\(^1\) NOAA/OAR/AOML, \(^2\) NOAA/NWS/NCEP/EMC

Supported by: HFIP, IFAA 1A.4a, 3A.1, 3A.2, HU-2, and UFS-R2O

2022 HFIP Annual Meeting, 7-9 November 2022, Miami, FL
Background

Project leads
Whitaker, Tallapragada, and Kinter

Project Engineers
Adimi and Kumar

NWS/OSTI OAR/WPO
Sims, Huang, and Kondragunta

MRW/S2S Integrated Application Team (including T&E)
Mehra/Stan

SRW/CAM Integrated Application Team (including T&E)
Alexander/Carley

Hurricane Integrated Application Team (including T&E)
Z. Zhang/X. Zhang

Atmospheric Composition
Stajner/Frost

Marine Components
Meixner/Hallberg

Atmospheric Physics and Dynamics, (including stochastic physics & land)
Yang/Bengtsson

Data Assimilation, Reanalysis & Reforecast
Kleist/Frolov

Application Support
Wolff/Bernardet

Modeling Infrastructure
Dunlap/Chawla

Verification & Post-Processing Infrastructure
Levit/Jensen
HAFS Current Status

Workflow
- Configurable moving nest capability
- Optional vortex initialization
- Configurable storm-region and/or entire domain data assimilation
- Post-process both parent and nest domain
- Research and forecast products
- ESG configuration

Moving nest
- Single-storm following nest
- Full physics nest motion
- Auto storm tracking
- Namelist option for moving nest
- Optimized running moving nest

Ocean/Wave coupling with moving nest
- HYCOM ocean coupling with HAFS parent
- Downscale HAFS parent SST for nest domain
- One-way coupling with WW3: generate HAFS/wave IC/BC from GFS/wave
HAFS Current Status

Utilities for DA and VI
- Interpolating/remapping functions
- Merging domains
- Interface to Data Assimilation
- Vortex consistency
- First Guess at Appropriate Time (FGAT)

Data Assimilation
- Storm-region inner-core DA
- DA cycling for entire parent domain for the coarser res. (~6km)
- 3DEnVAR with GDAS (or HAFS ensemble)
- Additional obs. Assimilated
 - Tail Doppler Radar (TDR)
 - Next Generation Weather Radar (NEXRAD)
 - Drifting corrected Dropsondes
 - Metar observations
 - High resolution GOES-16 AMVs
 - Test CIMSS Rapid scan winds

Infrastructure
- WriteGrid component for multiple domains
- FMS support telescopic & multiple nests
HAFS Development Priorities: after IOC

- **Moving nest**
 - Multiple storms
 - Flexible nesting refinement
 - NOAH-MP
 - uGWP upgrade
 - Code optimization

- **Data assimilation**
 - New data ingestion
 - 4DEnVar
 - Atmosphere/Ocean coupled DA
 - JEDI infrastructure
 - JEDI transition

- **Physics evaluation, transition & development**
 - PBL for TC application
 - NOAH-MP evaluation
 - saSAS upgrade, transition, & evaluation
 - Microphysics parameterization upgrade

- **Ocean model transition**
 - HYCOM to MOM6 transition
 - Atmosphere-MOM6-Wave three-way coupling
HAFS Development Priorities: future innovation

- **Moving nest**
 - Global moving nest
 - Telescopic moving nest for LES capability

- **Data assimilation**
 - Efficiency vs. accuracy
 - AI/ML technology for DA
 - Atmosphere/Ocean coupled DA: strongly vs. weakly
 - All-sky radiance: CRTM vs. RRTMG
 - New DA methodology: scale-aware, particle filter, etc.
 - DA and physics parameterizations interaction

- **Observations**
 - New observations
 - Observation strategy

- **Products**
 - Ensemble products
 - Product fidelities
 - 7-day forecast products

- **Physics**
 - AI/ML and physics parameterizations
 - Sub-kilometer physics
 - Physics interactions

- **Ocean-Wave-Atmosphere coupling**
 - Three-way coupling
 - Coupling strategy
 - Ocean and wave model physics
 - Ocean and wave model initialization
Wooden Bucket Theory

The shortest board determining the maximum capacity of the bucket
Summary

- HAFS completed for 2022 hurricane season real-time HFIP demo
- HAFS is aiming to initial operational implementation in 2023 hurricane season
- HAFS development and operational implementation will prioritize the following aspects:
 - Moving nest capabilities
 - New DA capabilities, methodologies and data
 - New physics ready for high-resolution
 - Synchronize development to NOAA's Unified Forecast System (UFS)