Transition of Research to Operations

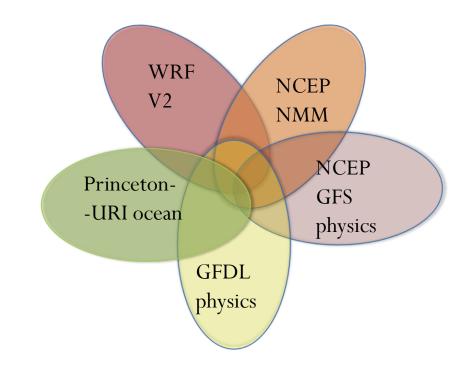
Ligia Bernardet

Shaowu Bao, Mrinal Biswas, Tim Brown, Don Stark, Laurie Carson

http://www.dtcenter.org/HurrWRF/users

External collaborators:

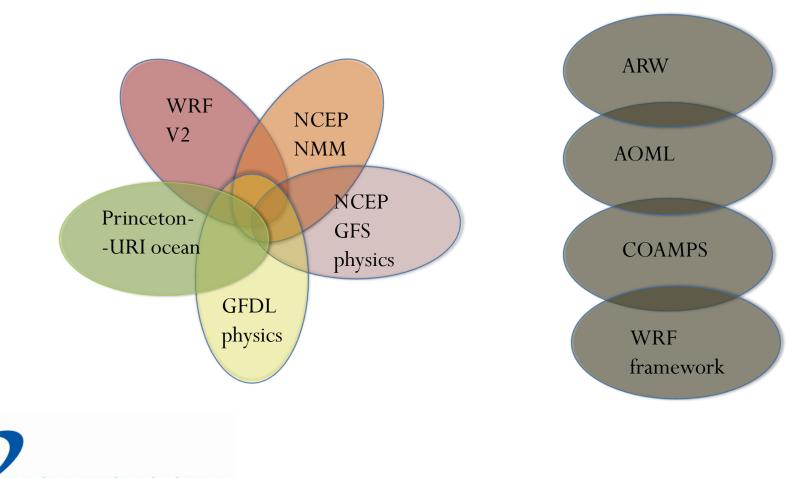
NOAA Environmental Modeling Center NOAA Geophysical Fluid Dynamics Laboratory NOAA Atlantic Oceanographic and Meteorological Laboratory NCAR Mesoscale and Microscale Meteorology Division University of Rhode Island


Developmental Testbed Center

Outline

- GFDL (limited development)
- COAMPS-TC (limited knowledge)
- HWRF (Focus of this presentation)
 - HWRF initial implementation, development 2008-2009
 - DTC Involvement 2009-present
 - Support to HWRF users
 - Recent R2O: does it meet our needs?
 - Revised HWRF code management and R2O protocols
 - Testing at DTC (past and future)
 - DTC facilitation of testing and transition, issues and challenges
 - Evaluation and verification

2007: HWRF Initial Implementation


• Developed 2004-2007 from a significant collaboration

HWRF Subsequent development

• 2007-2009 HWRF remained somewhat isolated from collaborations

Developmental Testbed Center-

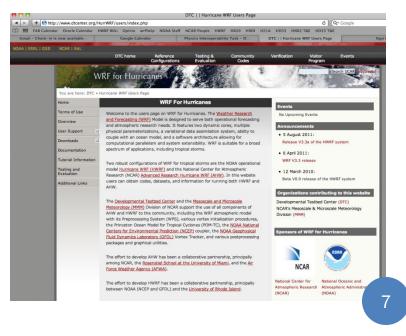
2009: Collaboration with DTC starts

- Recognition of importance of collaborations
- Decision to interface with community through DTC
 - Make operational code available to community
 - Manage code so that there is a single code base
 - Additional T&E to be performed by DTC

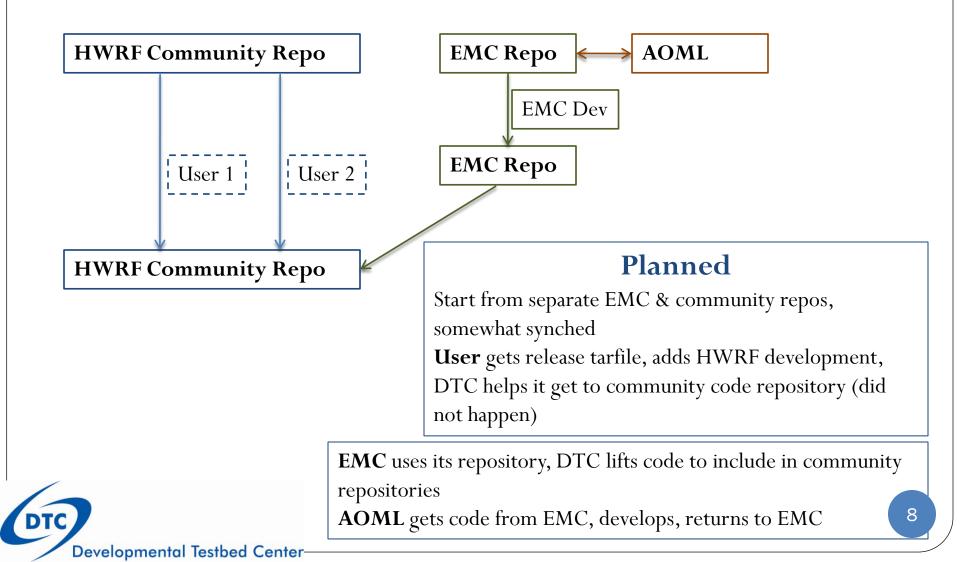
How is this being done and is it meeting our needs?

Timeline of DTC work in Hurricanes

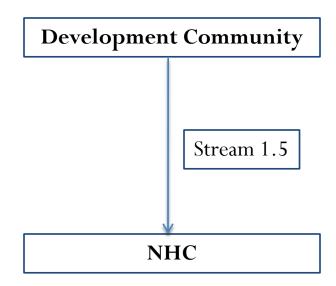
- 2009
 - Obtained HWRF codes
 - Established operational capability in existing repositories: WRF, WPS, WPP
 - Created community code repositories: POM, coupler, tracker, vortex initialization
- 2010
 - HWRF Beta-release, 1st HWRF Tutorial
 - Developed functionally-similar T&E suite
 - Testing for internal consistency, bug fixes
 - Operations: remain V2
- 2011
 - HWRFV3.3a release, 2nd HWRFTutorial
 - Testing for internal consistency, bug fixes
 - Operations: upgraded to V3.2


Good job of bringing community code and operational codes in sync

With commitment, can keep them in sync as we go forward


HWRF User Support

- Code releases : HWRFV3.3a released 8/4/2011
 - All HWRF components: WRF, WPS, Vortex Initialization, GSI, POM, coupler, UPP, tracker
 - 270 registered users
- Documentation: Users Guide, Scientific Documentation
- Datasets
- Email helpdesk
 - Average 40 messages a month



Recent R20

More recent R20 : HFIP Stream 1.5

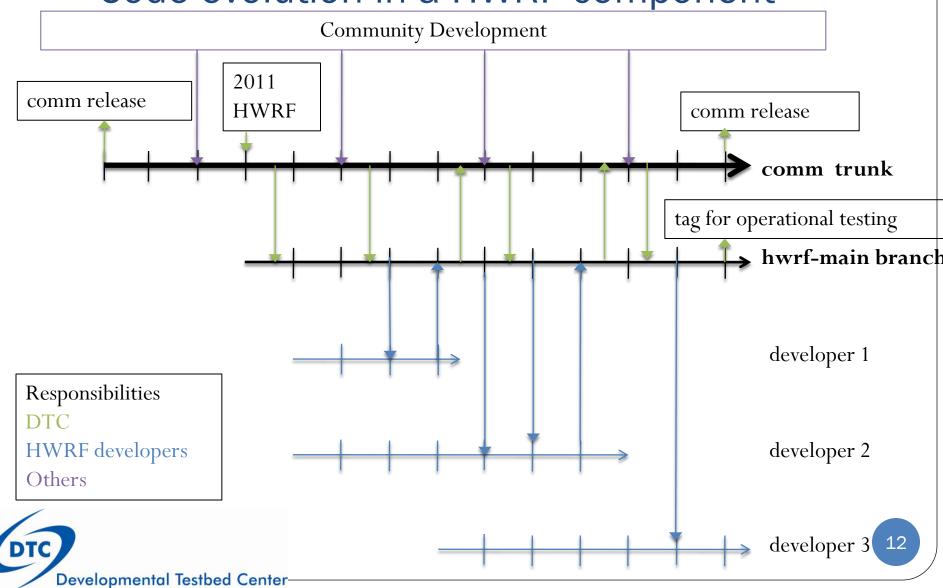
System

HFIP has large computational facility **No NCEP/NCO involvement**:

Researchers/Developers deliver forecasts to NHC R2O does not involve operational models

Developmental Testbed Center-

Does current system meet our needs?


- Transferring code between EMC-DTC 10repositories and backforth EMC-AOML can introduce errors
 - And it has!
- Not sustainable for many developers
 - EMC cannot closely interact with all HFIP AO recipients
- No mechanism for developers to interact and share code
 - Example: How will URI test ocean model using developmental AOML/EMC 3-nest capability?
- Difficult for DTC to conduct relevant tests if developers only release code that is already tested
 - Example: How can DTC improve computational performance of 3nest HWRF if code is yet to be transitioned to DTC?
- Important role for operational models (reliability etc.)
 - Stream 1.5 does not fill

Revised HWRF Code Management

- DTC/EMC conducted about 20 h of meetings in 04/2011
- Decided to unify all development in community repositories
- Devised system of branches to support developers
- System undergoing implementation
- EMC requires all development to be conducted in this framework

Code evolution in a HWRF component

Implementation of HWRF Code Management

HWRF Code Management Procedures

A collaboration between DTC and EMC

Point of Contact Ligia Bernardet (ligia.bernardet@noaa.gov)

First Draft: May 10, 2011; Second draft: May 31, 2011; Third draft: July 15, 2011

Goals

- Facilitate transfer of code between EMC, DTC, HWRF developers and HWRF users by improving the way code is shared and managed.
- Reduce the overhead in transferring code between multiple repositories.
- Minimize human error in the code management process.
- Install safeguards to protect integrity of the code.

August 2011: 2011 HWRF operational capability is available

- •To users in public release
- •To beta-test developers in SVN checkout

Developers: please contact DTC to obtain code and get your branch DTC will provide extensive support in using new system

DTC Testing: functionally-similar T&E suite

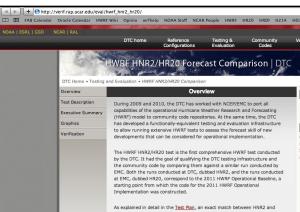
- •Pre-processing (including ability to ingest binary spectral GFS)
- •Cycled HWRF vortex initialization and relocation
- •GSI Data Assimilation
- •Coupled (POM + WRF) model
- •Post-processing
- •Tracking
- •NHC Verification & confidence intervals
- •Display
- •Archival
- •Uses NOAA Workflow Manager automation
- •Most runs done on jet; also available on bluefire IBM

2011 Operational Baseline Reference Configuration

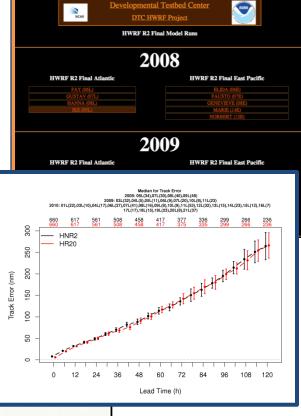
Goals

Create benchmark for community
Verify if 2011
Operational Baseline capability had been correctly ported to community codes and

Outcome


•Reference Configuration established

•Porting OK


The Developmental Testbed Center HWRF 2011 Baseline Test Plan Point of Contact: Ligia Bernardet December 15, 2010

Introduction

The DTC will be performing testing and evaluation for the Hurricane WRF system, known as HWRF (Gopalakrishnan et al. 2010). HWRF will be configured as close as possible to the operational HWRF model, employing the same domains, physics, coupling, and initialization procedures as the model used at the NOAA NCEP Central Operations and by the model developers at NCEP EMC. The configuration to be tested matches the 2011 HWRF Baseline, which is the configuration that served as control for all developments at EMC geared towards the 2011 operational implementation.

As explained in becau in the <u>test relat</u>, an exact macro between river, and HR20 was not expected due to a few differences in how HNR2 and HR20 were configured. For example, HNR2 was run in a Linux cluster, while HR20 was run in an LBW FO. Nevertheless, the results indicate that the average forecast skill for the track and intensity forecast is virtually indistinguishable between

2011 Operational capability in community code

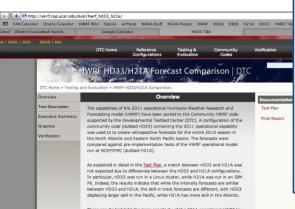
Goal

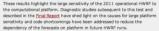
Verify if 2011 operational capability had been correctly ported to community codes

Outcome

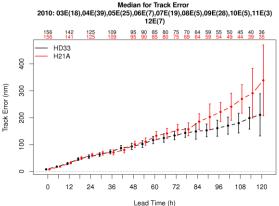
Test identified issues which led to crisis-RFC

The Developmental Testbed Center HWRF 2011 Operational Capability Test Plan


Point of Contact: Ligia Bernardet


June 24, 2011

1. Introduction


The DTC will be performing testing and evaluation for the Hurricane WRF system, known as HWRF (Gopalakrishnan et al. 2011). HWRF will be configured as close as possible to the operational HWRF model, employing the same domains, physics, coupling, and initialization procedures as the model used at the NOAA NCEP Central Operations and by the model developers at NCEP EMC. The configuration to be tested matches the 2011 Operational HWRF implemented at NCEP on May 15, 2011.

The HWRF System has the following components: WPS, prep_hybrid (WRF preprocessor for input of GFS spectral data in native coordinates and binary format), vortex relocation and initialization, GSI 3D-Var, WRF model using a modified NMM dynamic core, POM, features-based ocean initialization, UPP, GFDL vortex tracker, GrADS-based graphics, and NHCVx. All acronyms are listed in Appendix C. HWRF is currently designed for use in the North Atlantic and North East Pacific basins. Atlantic forecasts are in coupled ocean-atmosphere mode, while Pacific forecasts use only the atmospheric model.

Developmental Testbed Center

Upcoming Test at DTC

Revised code management should allow more relevant testing

	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
Consist	Expan	Expan	Expan	Test,	Test,	Test,	Test,	Test,	Test,	Test,	Test,	Test,
Check	d, test, report	d, test, report	d, test, report	report	report	report	report	report	report	report	report	report
Establish 2011 oper capab in comm code	POM Vortex	UPP	WRF Scripts Namel Fix fils	Test, reconc diffs	Report Code Releas	HWRF large scale diagno stics	HWRF large scale diagno stics	HWRF large scale diagno stics				
Physics inter operability			Devel	Devel	Devel	Report						
Computatio nal Perform					Assess	Impro ve	Impro ve	Impro ve	Impro ve	Impro ve	Impro ve	
High-res						Test	Report					
Incorporate new devs							Coupl 3 rd nest	Vortex initiali zation 3 rd nest and flex	Ideal	Other transit ion	Other transit ion	Other transit ion
нусом									Port	Port	Port	Prelim test
Ref Conf								Test	Test	Report		
Comprehe test									Test	Report		

HWRF operational physics

Physics	Package
Microphysics	Tropical Ferrier
Cumulus	GFS SAS
Surface	GFDL
PBL	GFS
LSM	Slab
Radiation LW/SW	GFDL

DTC (Biswas) is collaborating with NCAR/MMM (Dudhia) to increase HWRF interoperability
Document which physics are working for HWRF

•Connect more packages to HWRF

Microphysics options in WRF

Tropical Ferrier	Operational HWRF
Ferrier	
Kessler	Does not work with HWRF
Lin	
WSM3	
WSM5	
WSM6	Only working scheme is
Goddard	Ferrier because of advection of
Thompson	species
Milibrandt-Yau Double 7-class	
Morrison Double	
WRF Double 5-class	
WRF Double 6-class	
Stony Brook	

Cumulus options in WRF

HWRF 2011 SAS

Kain-Fritsch

Betts-Miller-Janjic

Grell-Devenyi

HWRF 2010 SAS

Grell-3D

Tiedke

GFS SAS for ARW

Zhang-McFarlane

Old Kain Fritsch

Operational HWRF

Works when used with other HWRF

packages

Does not work with HWRF

Not tested with HWRF

Surface / PBL options in WRF

GFDL	GFS
MMM Similarity	YSU
Eta Similarity	MYJ
GFS	GFS
QNSE	QNSE
MYNN	MYNN (2.5 or
	3.0)
Pleim-Xu	ACM2
	BouLac
	UW
	TEMF
Developmental Testbed Center-	MRF

DTC

Radiation LW and SW

Modified GFDL
GFDL
RRTM
CAM
RRTMG
Goddard

Modified GFDL

GFDL

Dudhia

CAM

RRTMG

New Goddard

Goddard

Held-Suarez

(ideal)

Land Surface Models in WRF

GFDL slab

5-layer diffusion

Noah

RUC

Pleim-Xiu

Work at DTC

- 1. Connect individual physics correctly
- 2. Test entire physics suites
- 3. Go beyond run/fail to diagnostics

Priorities for testing

- Helpful to DTC to have priorities of tests (focus on operational/HFIP needs)
- Easier to test
 - Physics already in WRF framework for NMM
 - Tunable parameters within physics
- Next level of complexity
 - Physics in WRF framework for ARW
 - Requires connecting to HWRF (physics and dynamics) not trivial
- Next level of complexity
 - Other physics (COAMPS etc.)
 - Added cost to make them available not trivial

Issues regarding physics testing

Resolution

- Physics can be targeted to certain resolutions; should we focus on 3 km?
- Is model top at 50 hPa adequate?
- **Ocean**: should HWRF experiments be done with POM or HYCOM?
 - If planning 2012 HYCOM implementation, should physics tests be done with HYCOM?

Idealized Simulations

- Important for developing and testing physics
- DTC working with J-W Bao to incorporate idealized hurricane case in community release
- Non-hurricane cases for NMM are also important

NMM-B and NEMS

- NCEP is transitioning all its models to the NOAA Environmental Modeling Framework
- Operational hurricane model will not be WRF-based
- NMM-E will be replaced by NMM-B
- How will we transition researchers from WRF to NEMS?
 - Strive for plug-n-play packages that work on both
 - Put NMM-B in WRF??
- How much to invest in current system
 - Worth to add advection of microphysical species to WRF-NMM, since it is already working in NMM-B?

Evaluation and Verification at DTC

- Current Activities
 - Performs Reference Configuration and other testing
 - Engaged in diagnostic activities
 - Started development of Hurricane Evaluation Toolkit
- Possible future activities
 - Maintain archive of benchmarked case studies
 - Conduct non-traditional verification (object-based etc.)
 - Develop Diagnostic toolkit

How can the DTC best serve the community (R and O)?

• Feedback is welcome on testing, code management, user support etc.

