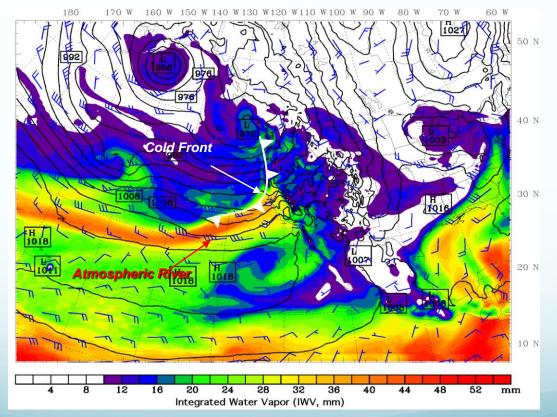


Structure of a winter precipitation system as seen by satellite, groundbased radar, and a WRF simulation

--- with an emphasis on model microphysics comparison

Mei Han^{1,2}, Scott A. Braun¹, Toshihisa Matsui^{1,3}, Christopher R. Williams⁴


¹ NASA Goddard Space Flight Center
² Morgan State University
³ University of Maryland
⁴ NOAA Earth System Research Laboratory

14th Conference on Mesoscale Processes, Los Angeles, CA

August 4, 2011

Objective

- Use active and passive microwave measurement
 - to study winter precipitation system
 - to validate model simulations with different microphysics schemes

Integrated Water Vapor (mm), Sea level pressure (contours), winds at 900 mb

Introduction --- How to validate the simulations?

Observations

(TRMM -- no sufficient coverage)

AMSR-E Radiometer Tb, PCT (sensitive to: precip. species, mass, PSD,...)

A ground-based Radar Reflectivity, Doppler Vel.

(sensitive to: precip. species, mass, PSD,...)

WRF model Mass: Qi, Qc, Qs, Qg, Qr Number con.: Ni, Nc, Ns... PSD, M-D, and densities Forward radiative model Same PSD assumption ... Scheme 2 Scheme 3 Scheme 1 Tb, Reflectivity, Tb, Reflectivity, Tb, Reflectivity, Vel.

Simulations

Description of Simulations

- WRF ARW V3.1
 - 4 nested domain (1.3, 4, 12, 36 km horizontal resolution, 52 vertical levels, 48 hours integration, output at every 5 min.)
 - 4 microphysics schemes
 - WSM6 (Hong and Lim 2006)
 - Goddard (Tao et al. 1989, Tao and Simpson 1993)
 - Thompson (Thompson et al. 2008)
 - Morrison (Morrison et al. 2009)
- Forward models
 - Goddard Satellite Data Simulator Unit (SDSU) -- Tb
 - Customized reflectivity calculation for each scheme
 - Customized doppler velocity calculation for WSM6 and GODD schemes

Description of Microphysics Schemes

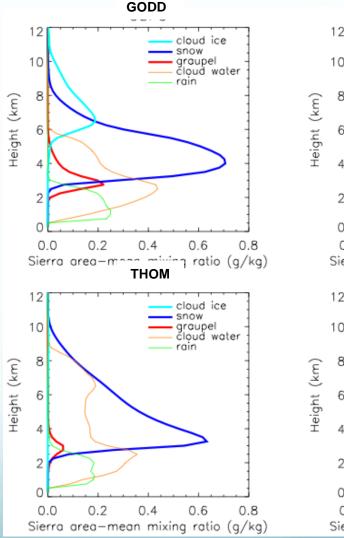
- Bulk scheme (predict mixing ratio and/or number concentration of cloud ice, cloud liq., snow, graupel, rain)

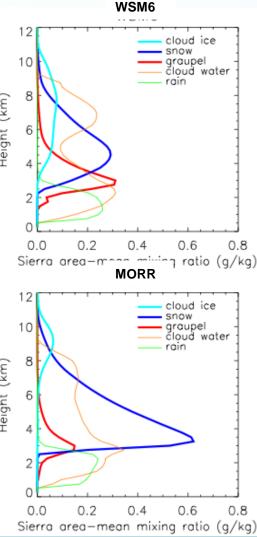
Particle Size Distribution (PSD): $N(D) = N_0 D^{\mu} e^{-\lambda D}$, except THOM snow Mass-diameter (M-D) relationship: $m(D) = c D_{here}^{d}$ $c = a \pi a b a 3$ for spheres.

	# of moment	PSD (μ= 0?)			Fixed or Varied N_0 (m ⁻⁴)?			M-D (If spheres?)			Bulk densityp _x (Kg/m³)		
		Sn	Gr	Ra	Sn	Gr	Ra	Sn	Gr	Ra	Sn	Gr	Ra
WSM6	1	0	0	0	N _{os} (T)	4.e6	8.e6	у	у	у	100.	500.	1000.
GODD	1	0	0	0	1.6e7	4.e6	8.e6	у	у	у	100.	400.	1000.
тном	1.5		0	0	effective N _{os} (T,q)	N _{og} (q)	N _{or} (n,q)	n A	у	у	not a const.	400.	1000.
MORR	2	0	0	0	N _{os} (n,q)	N _{og} (n,q)	N _{or} (n,q)	У	У	у	100.	400.	997.

 $m(D) = 0.069D^2$ (Cox 1988)

$$N(D) = \frac{M_2^4}{M_3^3} \left[\kappa_0 e^{-\frac{M_2}{M_3}\Lambda_0 D} + \kappa_1 \left(\frac{M_2}{M_3}D\right)^{\mu_s} e^{-\frac{M_2}{M_3}\Lambda_1 D} \right]$$
, where $M_n = \int D^n N(D) dD$ is nth moment. (Field et al. 2005)

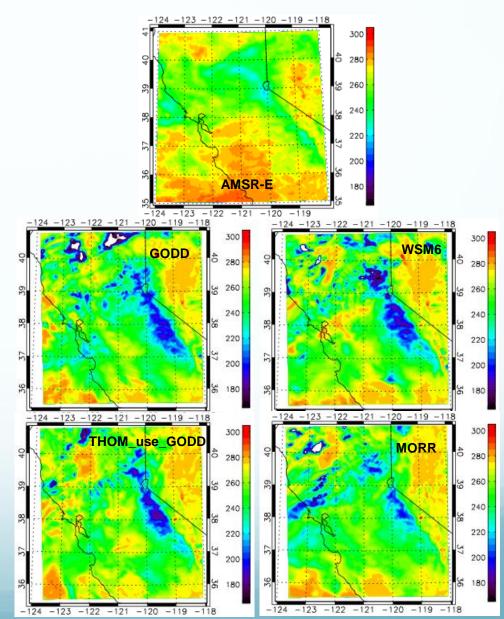

Simulations


Hydrometeor Vertical Profile

-- Mean mixing ratio profile over Sierra Nevada, at 10 UTC, 31 December, 2005

GODD

- More snow, shallower cloud liq.
- WSM6
 - Least snow, most graupel
- THOM
 - Least cloud ice, least graupel
- MORR
 - Moderate graupel



Observed and simulated PCT89

AMSR-E

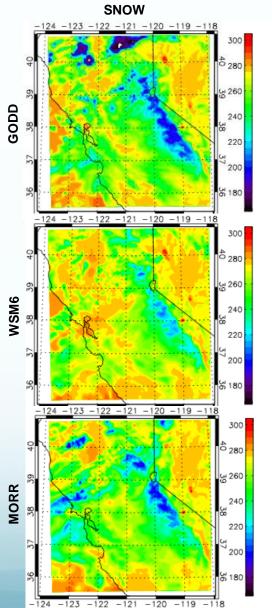
- Cold PCT -- snow and grauple near coastal region and over Sierra Nevada range
- 4 simulations
 - Generally too cold PCT -- too much precip. ice scattering
 - GODD and WSM6 are similar, despite diff. in snow and graupel profiles
 - MORR -- closer to Obs.
 - THOM (Note: estimated using GODD PSD assumptions) -too much ice scattering

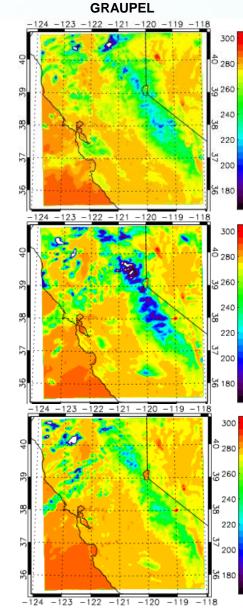
Comparisons

Partitioning simulated PCT89

-- snow vs. graupel

GODD


 Snow contribute more –– dominant mass of snow

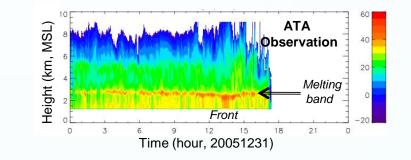

• WSM6

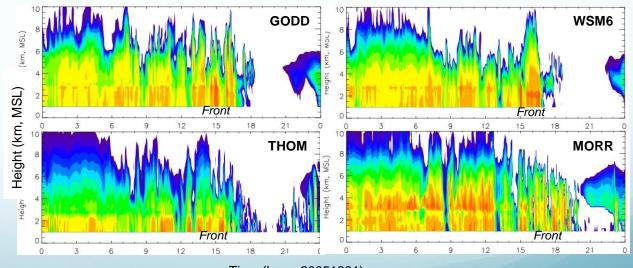
 Graupel contribute more –– graupel is more efficient in scattering

MORR

 Snow contribute more –– dominant mass of snow

Observed and simulated reflectivity


-- At Alta, CA, time - height plot, 31 December, 2005

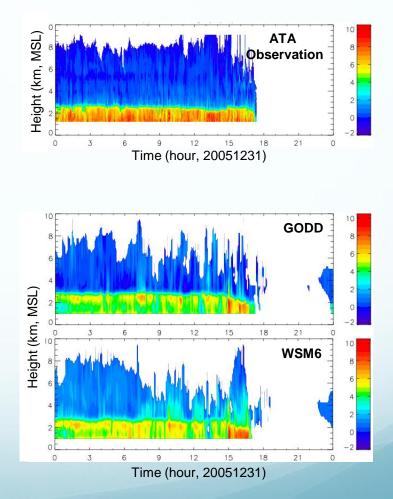

S-prof

- Melting band and front passage
- Rain (25 45 dBZ), snow (< 30 dBZ)

4 simulations

- Melting band ?
- Front passage is captured
- Reflectivity magnitude
 - GODD and WSM6: rain layer is OK, too strong in snow layer
 - THOM -- comparable to Obs.
 - MORR is too strong in both snow and rain layers

Time (hour, 20051231)


Obs. and sim. Doppler Velocity (DopVel)

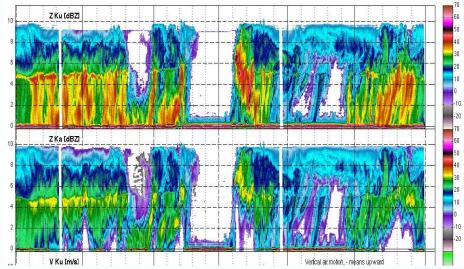
- Methodology on Doppler Velocity simulation for S-prof
 - DopVel = Vt + w
 - In WRF, Vt is mass/number-weighted, however, Vt is reflectivity-weighted in Obs.

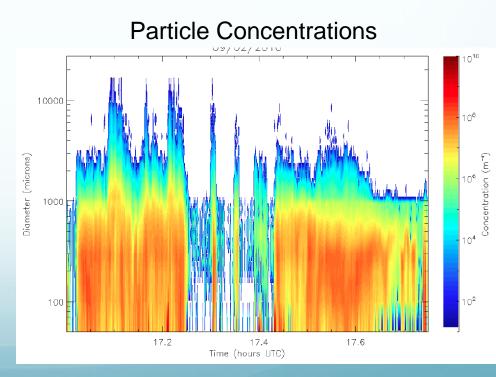
$$Vt = Vt_{s+g+r} = \frac{\int N_s \sigma_s(D) V_s(D) dD + \int N_g \sigma_g(D) V_g(D) dD + \int N_r \sigma_r(D) V_r(D) dD}{\int N_s \sigma_s(D) dD + \int N_g \sigma_g(D) dD + \int N_r \sigma_r(D) dD}$$

, where $V_x = a_x D^{b_x} (\frac{\rho_0}{\rho})$ is the particle fall velocity.
 a_x and b_x varies in diff. schemes

2 simulations

- DopVel in both schemes are slower than obs. in the rain layer
- GODD -- comparable to Obs. in snow layer
- WSM6 -- faster than Obs. in snow layer

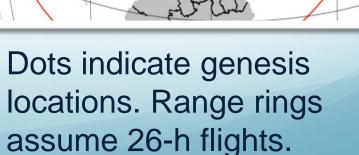

Summary

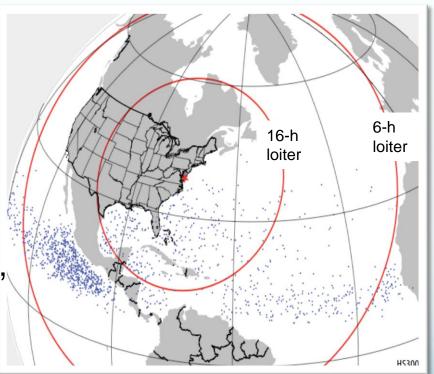

- Most schemes used produce deep layers of supercooled cloud water and too much ice aloft
- Some evidence that rain fall speeds are not large enough (dBZ larger, fall speeds smaller than observed)
- Ice fall speeds larger than observed, but so too are ice amounts. Likely from too much graupel
- Most schemes produce too much scattering at 89 GHz, but not clear what is the role of RTM

GRIP 2010

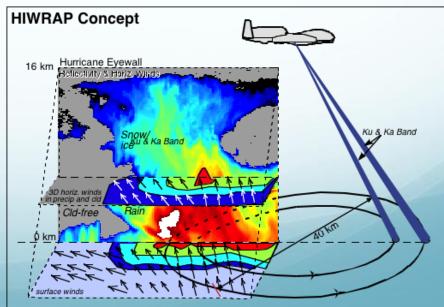
- Dual-frequency Doppler radar data (APR-2 on DC8, HIWRAP on Global Hawk)
- With appropriate reflectivity calculations, modeled hydrometeor mixing ratios, size distributions can be evaluated
- Cases: Earl, Karl, Matthew

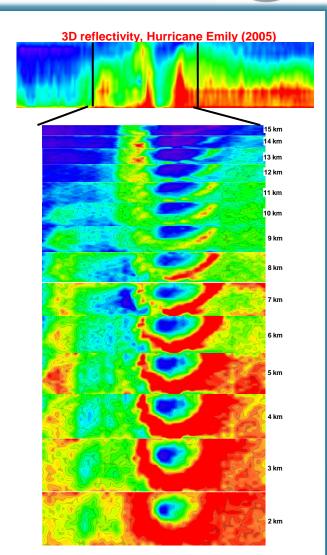
APR2 Radar Reflectivities





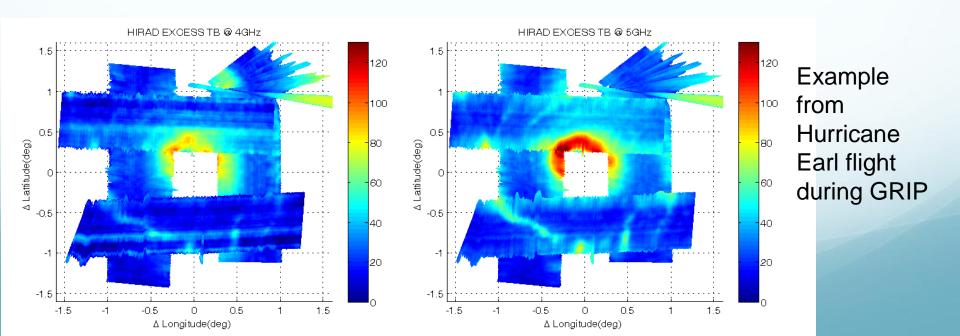
Hurricane and Severe Storm Sentinel (HS3) Overview


- Two aircraft, one equipped for the storm environment, one for over-storm flights
- Deployments of GHs from the East Coast, likely Wallops Flight Facility in VA
- One-month deployments in 2012, 2013, and 2014, 300 flight hours per deployment
- 3-year mission ensures adequate sampling of a wide variety of conditions


High-altitude Imaging Wind and Rain Airborn Profiler (HIWRAP)

- Instrument PI: Gerald Heymsfield, NASA/GSFC
- Data: Calibrated reflectivity, Doppler velocity, 3D reflectivity and horizontal winds, ocean surface winds in precipitation free areas
- Horiz., vertical resolution=
 - 1 km, 200 m for dBZ, Doppler velocity
 - 1 km, 500 m for horiz. winds
 - 2 km for surface winds

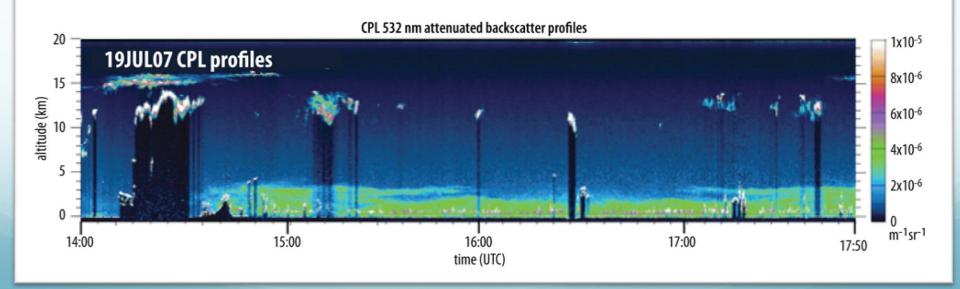
High-Altitude MMIC Sounding Radiometer (HAMSR)


- Instrument PI: Bjorn Lambrigtsen, JPL
- Data: Calibrated brightness temperature; vertical profiles of temperature and water vapor and liquid water; precipitation structure
- Horiz., vertical resolution=2km, 1-3 km

NASA HURRICANE AND SEVERE STORM SENTINEL HS3

Hurricane Imaging Radiometer (HIRA)

- Instrument PI: Tim Miller, NASA/MSFC
- Data: Surface wind speed, rain rate, and temperature; brightness temperature fields at 4 frequencies
- Technology similar to NOAA's SFMR, but scans cross track instead of just nadir
- Horiz. resolution=~1.5-2.5 km

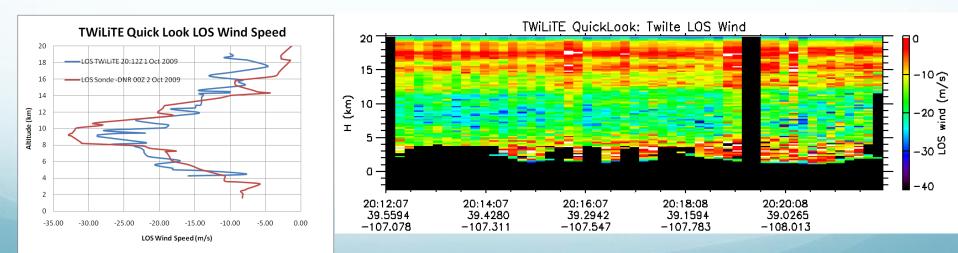


Cloud Physics Lidar

URRICANE

ND SEVERE

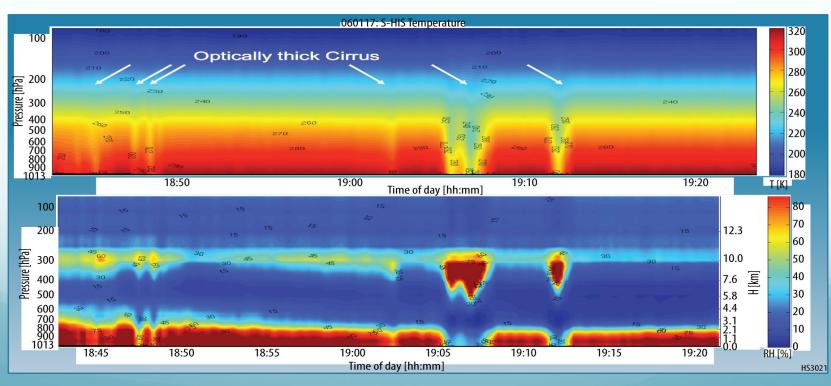
- Cloud/aerosol lidar (CALIPSO simulator)
- Instrument PI: Matt McGill, NASA/GSFC
- Data: Profiles of atten. backscatter, cloud/aerosol boundaries, optical depth, extinction, depolarization
- Horiz., vertical resolution=200 m, 30 m


TWiLiTE Wind Lidar

NASA HURRICANE

AND SEVERE

Storm Sentinel


- Instrument PI: Bruce Gentry, NASA/GSFC
- Data: Profiles of backscatter intensity, Doppler velocity, horizontal winds in clear-sky conditions
- Will fly as part of HS3 in 2013-14 only due to NGC schedule, wind pod availability
- Horiz., vertical resolution=~2 km radial winds, 8 km for retrieved horizontal winds, 250 m

Scanning High-resolution Interferome Sounder

- Instrument PI: Hank Revercomb, Univ. Wisconsin
- Data: IR TB spectra; Cloud-top temperature, height; sfc skin temperature; profiles of temperature and water vapor in clear-sky conditions
- Horiz., vertical resolution=2 km, 1-3 km

Dropsondes (AVAPS)

- Instrument PI: Gary Wick, NOAA
- Data: High-resolution vertical profiles of temperature, humidity, pressure, winds
- Potentially up to 89 drops per flight
- New design has flown on GH
 - Test flights (low, mid, high alt.) completed 2/4/11
 - NOAA science flights ongoing

