2021 HAFS-globalnest (HAFSV0.2B) Real-Time Plans

Pls: Andy Hazelton, Lew Gramer, Ghassan Alaka

Collaborators: Trey Alvey (AOML/CIMAS), Russell St. Fleur (AOML/CIMAS), Hyun-Sook Kim (AOML), Jun Zhang (AOML/CIMAS), Bill Ramstrom (AOML/CIMAS), Kyle Ahern (AOML/CIMAS), Xuejin Zhang (AOML), Sundararaman Gopalakrishnan (AOML), Frank Marks (AOML), Bin Liu (EMC), Avichal Mehra (EMC), Zhan Zhang (EMC), Chunxi Zhang (EMC), JungHoon Shin (EMC), Weigu Wang (EMC), Dan Rosen (GRL)
Overall track performance of HAFSV0.1B was better than most GFS-based guidance in 2020

Somewhat of a right bias at longer leads (TBD if that will persist)

HAFSV0.1B had a high bias at longer leads

This was improved in tests of HAFS-A 2021 baseline tests with ocean coupling
2021 Grid Configuration

- Keep the 2020 “global tropical channel” FV3 layout, with 13-km global resolution (C768)
- Static 3-km nest covering most of the tropical Atlantic
- Plan to use L75 vertical level configuration
- Will expand the eastern edge if enough resources are available
- Current plan is to couple to a “tropical channel” HYCOM
- Uses the “feature/multi_nests” branch of HAFS
- 168h forecasts, hopefully 4x daily
- 4560 cores in ~5.5-5.75 hours
2021 Physics Configuration

➢ PBL: modified EDMF-TKE used in 2020, compared with set of hindcasts using Hybrid-EDMF
➢ MEDMF-TKE will be used again in 2021
➢ Based on results from HAFS-A and GFDL T-SHiELD, we plan to turn on convection for the nest for 2021 to see if this helps reduce the right bias
Global Output Analysis

- feature/multi_nests branch allows for output of global data
- In 2020, analysis of the global skill of the global-nested system was examined for the first time
- Bias in subtropical ridge was noted
- Overall global skill was very similar to GFS
- Global data will be output in 2021 as well for further analysis of global synoptic and TC skill
Addition of Ocean Coupling

- Goal is to couple the tropical-channel HYCOM at ~9 km to the global domain
- Relatively inexpensive (adds ~240 cores x 2 threads)
- Right now there are technical hurdles within ESMF that are being sorted out
- Coupling to *nested* domain is working
- This is a possible fallback option but concerns about SST/flux artifacts along the edge of the nest: potential workarounds being explored
As always, products hosted at AOML model viewer:

https://storm.aoml.noaa.gov/basin/?projectName=BASIN

- Updates to model/radar comparison graphics
- New shear/RH analysis graphics (Trey Alvey)
- ATCF files transferred to NHC in 2020, plan to continue this year
- Plan to run EMC Graphics also
Possible Side Experiments for Comparison With HAFSv0.2B

These are some other tests that may be run (not in real-time) using resources on Hera/Orion pending technical readiness and resource availability:

1. Multiple static nests (EPAC/ATL, WPAC/ATL), coupled to HYCOM globally
2. Test of moving nest capabilities (?)
3. Test of some modifications to a newer version of EDMF-TKE, based on LES results (X. Chen collaborator)
4. Test of cycling/DA capabilities (like what will be in HAFS-D)
Questions?