A Multiple-Model Ensemble Examination of the Probabilistic Prediction of Hurricanes Sandy (2012) and Edouard (2014)

Christopher Melhauser and Fuqing Zhang Penn State University

In collaboration with: Yi Jin (NRL), Hao Jin (NRL), Allen Zhao (NRL), and Yonghui Weng (PSU)

Sponsored by ONR, NOAA, and NASA

Given pseudo-operational configurations of three TC-tuned regional models ...

- 1) How do the mean and spread of an ensemble with the same initial perturbations evolve using "multiple-models"?
- 2) Are single-core ensembles sufficient for representing model uncertainties in TC prediction or do we need multi-core ensembles?

Pseudo-operational configurations of TC tuned regional models

- Same initial conditions for all models
- Fixed SST from operational GFS
- Atmospheric component only

Model Versions

- WRF-ARW v3.6
- HWRF v3.5b
- COAMPS-TC v1.0 (Feb 2015)

Model Configurations

Domain Setup

Initial and Boundary Conditions

- Initial Conditions:
 - PSU WRF-EnKF (APSU) real-time 60-member ensemble analysis and perturbations
 - Operational GDAS analysis
 - APSU + GDAS interpolated and merged onto 0.1° x 0.1° grid on standard pressure levels

• Boundary Conditions: GFS forecast 6-120 hr (not perturbed)

Hurricane Sandy (2012) Ensemble Track

5 day forecast initialized 2012-10-26 00 UTC

Ensemble track mean and spread reproduced by each model-core

 Systematic mean difference at longer lead times

Hurricane Sandy (2012) Multiple Physics Ensembles

PBL, surface drag, cumulus "HWRF-Like" Physics **Ensemble Mean Track** 80 [°] W 70[°]W Track Spread* 550 500 40[°]N APSU 450 HWRF 400 **DASH-DOT** – SPREAD 250 [km] 300 250 200 200 150 100 30[°] N 50 0 APSU 12 24 36 48 60 72 84 96 108 120 0 HWRF Lead Time [hr] NHC *NHC best track data as verification

"APSU-Like" Physics

Modify microphysics, radiation,

Hurricane Sandy (2012) Multiple Physics Ensembles

"HWRF-Like" Physics **Ensemble Mean Track** 80[°]W 70[°]W Track Spread/Abs. Error* 550 500 APSU 40[°]N 450 HWRF **SOLID** – ABS ERR Error [km] 400 **DASH-DOT** – SPREAD 350 300 Spread / Abs 250 200 150 100 30[°] N 50 APSU 12 72 84 96 108 120 0 24 36 HWRF Lead Time [hr] NHC *NHC best track data as verification

"APSU-Like" Physics

Modify microphysics, radiation,

PBL, surface drag, cumulus

Hurricane Sandy (2012) Multi-Model Ensembles

80[°]W

Ensemble Mean Track

70[°]W

Multi-core and multi-physics ensemble track error distributions cannot be proven statistically different**

Increased track spread at longer lead times for multi-core or multi-physics

Track Spread*

Hurricane Sandy (2012) Multi-Model Ensembles

80[°]W

Ensemble Mean Track

70[°]W

Multi-core and multi-physics ensemble track error distributions cannot be proven statistically different**

Increased track spread at longer lead times for multi-core or multi-physics

Track Spread/Abs. Error*

Hurricane Edouard (2014) Ensemble Track and Intensity

5 day forecast initialized 2014-09-11 12 UTC

Multi-core ensemble spread larger than any individual single-core

Spread:

APSU ~ COTC !~ HWRF

Hurricane Edouard (2014) Ensemble Mean - Physics

"APSU-Like" Physics

Modify microphysics, radiation, PBL, surface drag, cumulus **"HWRF-Like" Physics** Shift single-core mean to behave similarly to a different model-core

- Physics configuration has a leading influence
- More evident in intensity

*NHC best track data as verification ** Bootstrapped K-S test (10,000 samples; α =0.05)

Hurricane Edouard (2014) Intensity Verification

"APSU-Like" Physics

Modify microphysics, radiation, PBL, surface drag, cumulus **"HWRF-Like" Physics** Similar spread evolution for multi-core and multi-physics ensembles

Both multi-core and multiphysics improve mean error within 3 days, but detriment after RI

Intensity Spread/Abs. Error of Mean*

*NHC best track data as verification ** Bootstrapped K-S test (10,000 samples; α =0.05)

Hurricane Edouard (2014) Ensemble Mean – Stochastic Physics

- Stochastic Kinetic Energy Backscatter Scheme (SKEBS; Shutts (2005), Berner et al. 2009)
 - Simulate upscale-propagating errors to account for shortcomings in un-resolved subgrid-scale processes
 - Perturb rotational u- and v-wind components and potential temperature (additive)
 - Spatially and temporally correlated perturbations
- Stochastically Perturbed Parameterization Tendencies (SPPT; Palmer et al. 2009, Berner et al. 2015)
 - Account for uncertainties in existing parameterization schemes
 - Perturb parameterization tendencies (multiplicative)
 - Similar spatial and temporally correlated perturbations to SKEBS

Hurricane Edouard (2014) Ensemble Mean – Stochastic Physics

SKEBS minimally impacts ensemble mean intensity and intensity spread.

SPPT increases spread, but degrades mean at longer lead times relative to control.

** Bootstrapped K-S test (10,000 samples; α=0.05)

Hurricane Edouard (2014) Ensemble Mean – Increased Initial Perturbations

I20P: 20% inflation I50P: 50% inflation Inflating initial perturbations can cover the intensity spread of multi-core and multi-physics ensemble while providing lower error and longer lead times

** Bootstrapped K-S test (10,000 samples; α=0.05)

Discussion

- → Recall: initializing three state-of-the-art regional TC-tuned models with the same global resolution IC/BC
- Ensemble track mean and spread generally reproduced by each model-core track and intensity solutions using identical initial perturbations
 - Systematic differences in mean track and intensity evident between model-cores
- Modifying single-core physics can alter mean and spread. Track and intensity error distributions for single-core multiphysics ensemble generally cannot be statistically proven different from multi-core ensemble
 - Stochastic physics and inflating initial perturbations can have similar effect
- \rightarrow Single-core multi-physics may be sufficient for TC prediction
- \rightarrow How much spread is sufficient?? Extremely hard to determine!

SUPPLEMENTARY MATERIAL

HU JOAQUIN (2015) **Operational/Real-time Experimental Common Grid** 70[°]W 60[°]W 50[°]W 80[°] W 80[°] W 70[°] W 60[°] W 50[°] W Initialized: 09-29 00 UTC 50[°] N 50[°] N APSU HWRF 40[°] N 40[°] N COTC NHC 30[°] N 30[°] N *APSU could not be 20[°] N 20[°] N tracked in experimental grid 70 70 60 60 50 50 40 40

PSU-EnKF real-time systems for Joaquin (2015): Ensemble at 12Z/29

-BEST

64^oW

60°W

72°W

68°W

HWRF-EnKF-

PSU ARW-EnKF

al112015 JOAQUIN Vmax(kt) @ 2015092912

0 12Z29 012 024 036 048 060 072 084 096 108 120

al112015 JOAQUIN Pmin(mb) @ 2015092912

PSU-EnKF real-time systems for Joaquin (2015): Ensemble at 00Z/30

Hurricane Sandy (2012)

*NHC best track data as verification

Hurricane Sandy (2012) Model Error Growth

"APSU-Like" Physics

Modify microphysics, radiation, PBL, surface drag, cumulus

"HWRF-Like" Physics

Max 10 m Wind Speed

Hurricane Sandy (2012) Dom. Int. DTE (FHR 012)

Hurricane Sandy (2012) Dom. Int. DTE (FHR 036) **HWRF** COTC **APSU** 100[°] W 60[°] W 80 W Ensemble Spread 28 40° N 26 -s m vertically integrated RMDTE 20[°] N 18 16 0 14 12 **APSU - HWRF APSU - COTC** HWRF - COTC Pairwisel Error

Track Error kernel smoothed density distribution (HU Sandy) Including all 6-hrly forecasts (0 to 120 h) and ensemble members

• ...

WSP error kernel smoothed density distribution (HU Sandy) Including all 6-hrly forecasts (0 to 120 h) and ensemble members

• . . .

MSLP error kernel smoothed density distribution (HU Sandy) Including all 6-hrly forecasts (0 to 120 h) and ensemble members

• ...

Kolmogorov–Smirnov non-parametric @ alpha=0.05 (HU Sandy)

TRACK ERROR																					
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
APS1 - HWRF	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	
APS2 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\circ	\bigcirc								
APS3 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\bigcirc								
APS4 - HWRF	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc														
APS5 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\circ	\bigcirc								
SPPT - APSU	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
SKEB - APSU	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	
MPHYS-MCOMB	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	
WSP ERROR																					
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
APS1 - HWRF	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS2 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS3 - HWRF	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS4 - HWRF	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
APS5 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
SPPT - APSU	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc								
SKEB - APSU	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	
MPHYS-MCOMB	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	
								M	SLP E	RROR											
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
APS1 - HWRF	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS2 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS3 - HWRF	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS4 - HWRF	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	
APS5 - HWRF	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	
SPPT - APSU	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\circ	
SKEB - APSU	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\circ	
MPHYS-MCOMB	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\circ	

Domain integrated DTE (HU Sandy) 6-hrly forecasts initialized at 2012-10-26 00 UTC

Hurricane Sandy (2012) Ensemble Mean – Stochastic Physics

SPPT shifts both the ensemble mean, improving track but degrading intensity

SKEBS minimally impacts mean

Ensemble Mean Intensity

Hurricane Sandy (2012) Absolute Error and Spread – Stochastic Physics

Horizontal RMDTE (HU Sandy) – Stochastic Initialized at 2012-10-26 00 UTC

FHR 012

FHR 036

Pairwise Error

s-1]

<u></u>

vertically integrated RMDTE

Horizontal RMDTE (HU Edouard) – Stochastic Initialized at 2012-10-26 00 UTC

FHR 012

s-1]

<u>3</u>

vertically integrated RMDTE

Hurricane Edouard (2014) Model Error Growth

"APSU-Like" Physics

Modify microphysics, radiation, PBL, surface drag, cumulus **"HWRF-Like" Physics** Error growth between models for the same ensemble member is highly dependent on model and/or physics configuration

Pairwise Track RMS Difference Pairwise Intensity RMS Difference 750 25 Root Mean Squared Difference [ms-1] Difference [ms-1] HWRF-COTC 700 HWRF-APSU 650 600 COTC-APSU 550 **APSX-APSU** 500 450 400 Squared 350 300 10 250 200 Root Mean 5 150 100 50 0 0 96 84 0 12 24 72 108 120 0 12 24 84 96 108 120 Lead Time [hr] Lead Time [hr]

Hurricane Edouard (2014) Model Error Growth

"APSU-Like" Physics

Modify microphysics, radiation, PBL, surface drag, cumulus

"HWRF-Like" Physics

Hurricane Edouard (2014) Absolute Error and Spread – Stochastic Physics

Hurricane Edouard (2014) Absolute Error and Spread – Initial Perturbations

I20P: 20% inflation I50P: 50% inflation

Hurricane Edouard 2D power spectra of DTE at selected times

- Only energetic system in domain, upscale error growth within models
 - Model physics can drastically alter the error growth characteristics (HWRF and APS5)
 - Differences at smaller wavelengths due to diffusion/damping

Hurricane Edouard and Sandy 2D power spectra of DTE at selected times

Track Error kernel smoothed density distribution (HU Edouard) Including all 6-hrly forecasts (0 to 120 h) and ensemble members

WSP error kernel smoothed density distribution (HU Edouard) Including all 6-hrly forecasts (0 to 120 h) and ensemble members

• ...

MSLP error kernel smoothed density distribution (HU Edouard) Including all 6-hrly forecasts (0 to 120 h) and ensemble members

• . . .

Domain integrated DTE (HU Edouard)

6-hrly forecasts initialized at 2014-09-11 12 UTC

Altering APSU dynamics (HU Edouard)

Including 60 ensemble member 6-hrly forecasts (0 to 120 h)

Kolmogorov–Smirnov non-parametric @ alpha=0.05 (HU Edouard)

								TR	ACK E	RRO	R										
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
APS1 - HWRF	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ
APS2 - HWRF	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS3 - HWRF	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS4 - HWRF	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS5 - HWRF	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SPPT - APSU	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SKEB - APSU	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
MPHYS-MCOMB	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc								
WSP ERROR																					
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
APS1 - HWRF	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS2 - HWRF	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS3 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS4 - HWRF	\bigcirc	\circ	\circ	\circ	\bigcirc	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS5 - HWRF	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SPPT - APSU	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SKEB - APSU	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\circ	\circ
MPHYS-MCOMB	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\circ	\bigcirc
		_				-	-	M	SLP E	RROF	2	-		-							
	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
APS1 - HWRF	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS2 - HWRF	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS3 - HWRF	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS4 - HWRF	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
APS5 - HWRF	\bigcirc	\circ	\bigcirc	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc
SPPT - APSU	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SKEB - APSU	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc
MPHYS-MCOMB	\bigcirc	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\circ

Domain integrated DTE (HU Edouard)

6-hrly forecasts initialized at 2014-09-11 12 UTC

Hurricane Edouard (2014) Ensemble Simulations

- APSU 2014 IC; GFS BC
- Initialized 2014-09-14 00 UTC

50°W

• 5 day forecast

60[°] W

40 ° N

30 ° N

Lead Time [hr]

*APSG: original high resolution GRIB IC before model initialization

Hurricane Edouard (2014) Ensemble Mean Simulations

Table 1

Model	DOMAIN	CP	MP	PBL	RAD	SFC
APSU (2014) (WRF-ARW)	D01: 27km (379x244) D02: 9km (304x304) D03: 3km (304x304) Vertical Levels: 43 Model Top: 10 hPa	D01 ONLY Grell-Freitas (Grell et al. 2013)	WSM-6 (Hong and Lim 1996)	YSU (Hong et al. 2006)	Dudhia shortwave (Dudhia 1989) RRTM longwave (Mlawer et al. 1997)	- Modified MM5 similarity (WRF option 91) - PSU formulation surface TC flux (Green and Zhang, 2013) - 5-layer thermal diffusion land surface
HWRF (2013) (modified WRF-NMM)	D01: 0.18 deg (216x432) D02: 0.06 deg (88x170) D03: 0.02 deg (180x324) Vertical Levels: 43 Model Top: 50 hPa	D01 & D02 New SAS (HWRF) (Han and Pan 2011)	Tropical Ferrier (Ferrier 2005)	Modified GFS (Hong and Pan(1996); e.g. Gopalakrishnan et al. (2013); Zhang et al. (2013))	GFDL shortwave and longwave (Fels and Schwarzkopf 1981)	- HWRF surface physics - GFDL hurricane slab model land surface (Bob Tuleya 2011)
COTC (2015) (COAMPS-TC)	D01: 27km (379x244) D02: 9km (304x304) D03: 3km (304x304) Vertical Levels: 40 Model Top: ~ 12 hPa	D01 ONLY Kain-Fritsch scheme (Kain and Fritsch, 1983)	COAMPS v2 single-bulk (Rutledge and Hobbs, 1983) w/ drizzle	Mellor-Yamada 2.5 scheme (Mellor and Yamada 1982) w/ prognostic TKE	NOGAPS SW/LW (Harshvardhan et al., 1987)	COAMPS surface physics (Louis, 1979)

Model	Time Discretization	Spatial Discretization	Prognostic Variables	Advection	Diffusion
APSU (2014) (WRF-ARW) (see Skamarock et al. 2008 and references therein)	Runge-Kutta 3rd order predictor-corrector scheme (Wicker and Skamarock (2002)) with short time step time- splitting for high frequency acoustic modes	Horizontal: Arakawa C- grid Vertical: mass + U,V and vertical velocity staggering	U, V, W, perturbation potential temperature, perturbation geopotential, perturbation surface pressure of dry air, TKE, Q_v , Q_r , Q_s , Q_g , Q_i , Q_c	6th order accurate for momentum, scalars and geopotential	6 th order accurate
HWRF (2013) (modified WRF-NMM) (see Janjic et al. (2010), Tallapragada et al. (2013, and references therein)	Forward-backward scheme with an implicit scheme for high frequency vertically propagating modes	Horizontal: Arakawa E- grid Vertical: Lorenz staggering (mass + U,V on consistent levels)	U, V, T, non-hydrostatic pressure, hydrostatic surface pressure, Q _v , Q _r , Q _i , Q _{ci} , Q _c	Horizontal: modified Adams-Bashforth, for horizontal advection of u,v, and T, and Coriolis terms, Vertical: Crank Nicholson for vertical advection of u,v, and T, Scalars: upstream Lagrangian forward time differencing	2nd order accurate
COTC (2015) (COAMPS-TC) (see Hack (1996), Chen et al. (2003), and references therein)	Centered-in-time (i.e. leap frog) 2 nd order scheme with short time step time-splitting for high frequency acoustic modes	Horizontal: Arakawa C- grid Vertical: mass + U,V and vertical velocity staggering	U, V, W, θ, π, TKE, Q _v , Q _r , Q _i , Q _g , Q _s , Q _c	2 nd order accurate upstream, forward- in-time advection	4 th order accurate

Table 3

Experiment Name	CP	MP	PBL	RAD	SFC
ALT1 APSU w/mod TC SFC flux	D01 ONLY Grell-Freitas	WSM-6	YSU	Dudhia shortwave RRTM longwave	Same to APSU w/ WRF TC surface flux (Garratt formulation)
ALT2 APSU w/mod TC SFC flux, MP	D01 ONLY Grell-Freitas	Eta (Ferrier)	YSU	Dudhia shortwave RRTM longwave	Same as ALT2
ALT3 APSU w/mod TC SFC flux, MP, RAD	D01 ONLY Grell-Freitas	Eta (Ferrier)	YSU	GFDL shortwave/ longwave	Same as ALT2
ALT4 APSU w/mod TC SFC flux, MP, RAD, CP	D01 & D02 New SAS (HWRF)	Eta (Ferrier)	YSU	GFDL shortwave/ longwave	Same as ALT2
ALT5 "HWRF-LIKE"	D01 & D02 New SAS (HWRF) (Han and Pan 2011)	Eta (Ferrier) (Rogers, Black, Ferrier, Lin, Parrish and DiMego 2001)	GFS (Hong and Pan 1996)	GFDL shortwave/ longwave (Fels and Schwarzkopf 1981)	Same as ALT2