

A HYBRID STATISTICAL-DYNAMICAL APPROACH TO TROPICAL CYCLONE WIND SPEED PROBABILITIES

Andrea Schumacher, CIRA/CSU

Workshop on Effective Use of Hurricane Ensembles 17 Nov 2015, Miami, FL

Outline

- Overview of the Monte Carlo wind speed probability model (MC Model)
 - How uncertainty is currently incorporated
- Incorporation of global model tracks hybrid statistical dynamical MC Model
 - Methodology
 - Real-time display
- Verification

MC Model Basics

- 4
- Estimates probability of 34-, 50- and 64-kt winds to 5 days
- 1000 track realizations generated from random sampling NHC track and intensity error distributions
- Wind radii of realizations from radii CLIPER model and its radii error distributions
- Serial correlation of errors included
- Probability at a point computed by counting the number of realizations passing within the wind radii of interest
- Developed under JHT, implemented in 2006, several updates since (incorporation of GPCE)

MC Model Example Hurricane Earl 31 Aug 2010 00 UTC

1000 Track Realizations

OH KΥ TN AL. GA Bermuda lamaica 65М 75W 70W 80W 60W 55W

34 kt 0-120 h Cumulative Probabilities

How situation-specific track uncertainty is incorporated now

Sample different track forecast error distributions based on GPCE tercile (low/avg/high)

Lower GPCE

Incorporating ensembles

7

Current method anchored to deterministic NHC forecast

Unable to represent multiple track scenarios (be design)

Data

- Tropical cyclone advisories and forecasts
 - a-decks, b-decks and e-decks
- Global numerical model ensemble forecasts
 - GFS (20 members)
 - CMC (20 members)
 - ECMWF (50 members)
 - FNMOC (20 members)
 - UKMET (23 members)
 - 133 model track forecasts total

Methods

- Replaced track realizations with global model ensemble tracks
 - 1000 \rightarrow 133 realizations
- Intensity and radii same as statistical version
- Atlantic, NE Pacific, NW Pacific basins
- Runs on numbered invests (not verified)
- □ Latency ~ 6-12 hrs
 - Runs as soon as first ensembles are available
 - Keeps updating until all are available
- Runs at 0 and 12 UTC

Real-time hybrid WSPs

55W

5Ó₩

45W 105W

100W 95W

CIRA/RAMMB

gów sśw

65W

** THIS IS AN EXPERIMENTAL PRODUCT **

65W 60W

** THIS IS AN EXPERIMENTAL PRODUCT **

http://www.hfip.org/data/ Display of: Ensemble probability Select model: Windspeed probability thresholds

105W 100W

95W

CIRA/RAMMB

gów

¹¹ 2012-2014 Verification

Brier scores
Reliability
Atlantic, NE Pacific, NW Pacific basins

% Reduction in Brier scores - Atlantic

Both 34-kt and 64-kt, all years: Hybrid Brier scores < statistical Brier scores (i.e., magnitude of errors is smaller)

Reliability – Atlantic (34kt 0-120h Cum)

Atlantic 2014 - 34kt cumulative Observed frequency (%) statistical hybrid x=v Forecast Probability (%)

Statistical: tendency to underforecast, especially higher probabilities (although 2013 was almost perfect – lots of weaker Atlantic systems)

Hybrid: underforecasts more than statistical

Reliability – Atlantic (64kt 0-120h Cum)

Statistical: tendency to overforecast, especially for higher probabilities

Hybrid: better reliability

% Reduction in Brier scores – NE Pacific

34-kt cumulative and incremental: Hybrid BS < statistical BS (i.e., magnitude of errors is smaller)

64-kt cumulative and incremental: Hybrid $BS \ge$ statistical BS(i.e., magnitude of errors is larger)

Reliability – NE Pacific (34kt 0-120h Cum)

Statistical: consistently overforecasts

Hybrid tendency to underforecast improves reliability

Reliability – NE Pacific (64kt 0-120h Cum)

% Reduction in Brier scores – NW Pacific

Both 34-kt and 64-kt, all years: Hybrid Brier scores < statistical Brier scores (i.e., magnitude of errors is smaller)

Reliability – NW Pacific (34kt 0-120h Cum)

Statistical: tendency to underforecast, especially higher probabilities

Hybrid: very similar to statistical

Reliability – NW Pacific (64kt 0-120h Cum)

Summary / Future work

Verification, hybrid vs. statistical

Atlantic

- improves Brier scores
- worsens conditional bias towards underforecasting probabilities

NE Pacific

- impact on Brier scores mixed
- improves conditional bias towards overforecasting probabilities

NW Pacific

- improves Brier scores
- slightly worsens conditional bias towards underforecasting probabilities

Future work

- Continue running hybrid WSPs in real time
- Evaluate hybrid WSPs in applications that use WSPs
 - Application to TCCORs (B. Sampson)

Future work – other hybrid methodologies

22

Thank you! Questions?

- 23
- Goerss, J. S., 2007: Prediction of consensus tropical cyclone track forecast error. Mon. Wea. Rev., 135, 1985–1993.
- Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781–791.
- DeMaria, M., J.A. Knaff, R.D. Knabb, C.A. Lauer, C.R. Sampson, and R.T. DeMaria, 2009: A New Method for Estimating Tropical Cyclone Wind Speed Probabilities. Wea. Forecasting, 24, 1573–1591.
- DeMaria.M., J.A. Knaff, M.J. Brennan, D. Brown, R.D. Knabb, R.T DeMaria, A. Schumacher, C.A. Lauer, D.P. Roberts, C.R. Sampson, P. Santos, D. Sharp, and K.A. Winters, 2013: Improvements to the operational tropical cyclone wind speed probability model. Wea. Forecasting, 28, 586-602.

Extra slides

24

Impacts of using fewer realizations

In the log-log diagram, errors (E) are nearly a linear function of N:

$$E = C / N^z$$
 (6)

Where C and Z are constants. Taking the natural log of both sides gives

$$y = mx + b \tag{7}$$

Where y = ln(E), x = ln(N), b = ln(C), and m = -z.

Fitting (7) to max. error data yields: z = 0.485, C = 109.2%

Fitting (7) to avg. error data yields: z = 0.490, C = 15.8%

FIG. 5. The maximum and average error of the 64-kt wind probabilities for Hurricane Ike starting at 1200 UTC 7 Sep 2008 as a function of the number of realizations. Note that both axes have log scales.

Maximum and average errors are both inversely proportional to the square root of N:

$$E \sim 1/N^{0.5}$$

For N = 1000, avg E = 0.5% For N = 100, avg E = 1.6% i.e., factor of 10 reduction in N Yields smaller increase in E (~factor of 3)

How situation-specific track uncertainty is incorporated now

