High-Res Physics Tiger Team Report

Sergio Abarca¹, Gopalakrishnan Sundararaman²

2017 HFIP Annual Meeting, Miami, FL Jan 11, 2017 ¹IMSG/EMC ²HRD

3 driving agents

Realism

- Better portray the physical processes that parameterizations represent
- Attribution (idealized simulations)

Model biases/problems

Identify/understand/eliminate

- Positive intensity bias of weak storms & negative intensity bias of strong storms
- Secondary eyewalls
- Too large Radius of Maximum Winds
- Heat flux bias as reported by Joe Cione

Modeling interests

- Consistency with large scale models Tuning imported parameterizations
- Scale aware physics
- Stochastic parameterizations

Identical idealized simulations except for the PBL parameterization

HWRF 2016 PBL

1.4

1.2

0

Lin et al

HWRF 2015 PBL

Vertical velocity- color, m s⁻¹ Tangential velocity-contours, m s⁻¹

Identical idealized simulations except for the PBL parameterization

Changing (only) PBL from HWRF 2015 to HWRF 2016 renders an idealized integration with a secondary eyewall*

Vertical velocity- color, m s⁻¹ Tangential velocity-contours, m s⁻¹

Lin et al

HWRF 2016, "Hybrid" PBL

K-profile + other term

Mass FluxBecause K-profile alone undergredicts growth of boundary layerMew in HWRF 2016, along with GFS changes since 2011	Counter Gradient Because mass flux deteriorates wind field over tropical oceans As in HWRF 2011	K-profile	Other local Scheme (function of the Richardson number)
Strongly unstable (over continents)	Weakly unstable	Weakly stable	Very stable
-0.5 0).2

Experiment initialized on 2016072912

Time, 6-hourly output

Hurricane Edouard: 10m Wind Speed (ms⁻¹) *Valid: September 15th 18Z*

OBSERVATIONS

HWRF (t=0)

Courtesy of Joe Cione

Hurricane Edouard: Surface Latent Heat Flux (Wm⁻²) Valid: September 15th 18Z

OBSERVATIONS

HWRF (t=0)

"Large" bias in initial conditions

Marks, Sellwood and Abarca

RMW bias larger at initialization than at 6-h forecast!

Physics test – RMW bias

- HWRF 2016 PBL, COAC, and Cd/Ch change all reduced Vmax and RMW bias
- RMW bias still larger at analysis time than at 6h for all tests & remains positive throughout forecast

From Jason Sippel

Hurricane Earl (2010): Convection

Shear: Northerly, about 5 m/s

RI occurs after persistent deep convection taking place inside RMW in downshear-left quadrant

Q: Will storms always intensify after convection takes place persistently in downshear-left quadrant inside RMW?

-Oh CB coverage averaged between 0h—36h

DSR

DSL

USL

USR

Histogram of CBs Evolution in RI Scenario

A: Only storms with convection rotating into USL quadrant intensify!

Q: Why deep convection can rotate into USL quadrant in RI

members but can't in NI members?

A: Environmental flow in left-shear quadrants determines if deep convection can propagate into USL after deep convection takes place; moisture field in DSR quadrant is important in the initiation of deep convection.

Ferrier-Aligo Microphysics Changes

(reduces evaporation)

DTC physics testing: Grell-Freitas

- Grell-Freitas convective scheme implemented in HWRF by G. Grell and J.-W. Bao (NGGPS project)
 - Scale-aware/Aerosol-aware (Grell and Freitas, 2014)
- DTC is undergoing testing of the G-F scheme in HWRF
 - Provided developer support to bring code and subsequent bug fixes into centralized HWRF repository
 - Tests are against baseline 2016 operational HWRF configuration.
 - Initial results in AL basin show promising results in both track and intensity

DTC physics testing: clouds and radiation

- Funded DTC Visitor Program PIs M. Iacono & J. Henderson (AER) implemented alternate cloud overlap methodology (Exponential-Random) with RRTMG in HWRF
 - DTC provided support for bringing code into HWRF
- Modified partial cloudiness (icloud=3) updates provided by G. Thompson (NCAR)
 - Modifications reduce solar radiation biases
- Tests are underway for both cloud-radiation modifications using 2016 operational HWRF configuration

High Priority Areas for Physics betterment

- Continue to incorporate scale aware physics
- Continue maintaining alignment with global models
- Microphysics higher moment (or species advection?)
- Adopt stochastic approaches
- Address identified model biases
 - RI/RW
 - Positive intensity bias of weak (<50kt) storms and negative intensity bias of strong (>50kt) storms
 - Air sea interaction (Joe Cione)
 - Storm structure
 - Secondary eyewalls
 - RMW

Successes!:

- Wavenumber 1 asymmetries!
- Progress on secondary eyewalls!
- Mean intensity bias is close to zero!
- Intensity performance in Atlantic improved systematically since 2011!
- Improvement in storm size!