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 Human brain takes best possible decision from 
past experience

 Information from the environment is taken by 
the sensory organs & passed to the brain through 
neurons (nerve cells)

 10 billion nerves with 10000 synapses (meeting 
point of two nerves) 
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 Input branch (Dendrites)
 Output branch (Axon)
 Dendrites sends the 

received information 
through the cell body to
the action

* Axon passes it to dendrite 
of the next neuron via 
synapse
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IDEA IS FOLLOWED TO APPROXIMATE
OUTPUT FOR A GIVEN SET OF INPUTS
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ACTIVATION FUNCTION

 Linear

 Logistic

 Hyper tangent
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APPLICATIONS

 Classification
 Discrimination
 Estimation (time series prediction)
 Process identification
 Process control
 Etc …
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TYPES WE CONSIDER

 Multilayer Perceptron (MLP)

 Generalized Regression Neural Network

Information flows from input to output
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LEARNING

 Previous observations on input (s) as well as 
output are provided repeatedly to estimate the 
neuron parameters (supervised learning)

 Modification of parameters for better 
performance (desired output)
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CHOICE OF WEIGHTS

 Let                                                           be a set of 
given observations

 Estimate y which minimizes the square error loss

 The weights (here model weights) are so chosen 
that ESS would be minimum
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CHOICE OF WEIGHTS CONTD…
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MLP
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TASKS

 Numbers of hidden layers (developer provided)

 Determining the learning rate (developer 
provided)

 Train the network

 Evaluate the performance

 Repeat the above process if not satisfied 
(iterative) 12



GRNN: BASED ON STANDARD STATISTICAL
THEORY
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GRNN: SCHEMATIC PRESENTATION

Input layer Pattern layer
Summation 

layer
Output 
layer 16



ADVANTAGES

 No user choice for the network architecture

 Only one parameter to be estimated

 Does not get trapped into the local optima

 Requires less number of data for training

 Useful for continuous data
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RESULTS: SEASON 2012 INTENSITY ERRORS
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INTENSITY ERRORS: SEASON 2014
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SEASON 2015
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21-60
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SEASON 2016: INTENSITY ERRORS
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SKILLS: 2016 SEASON
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CONCLUDING REMARKS

 Seasonal summaries indicate that the 
improved MMSE carries, consistently, least 
intensity forecast errors

 For longer forecast leads, beyond 60hrs, 
Neural Networked based MMSE performs 
better than the earlier forecast leads. It is 
very useful for government planning and 
evacuation, if needed

 Individual storm forecast errors show that 
none of the models is consistently best 27



CONCLUDING REMARKS CONTD …
 Improved MMSE is the best or the second 

best performer for individual storms as well

 Proposed method is providing consistent 
consensus forecasts having least forecast 
errors which be depended upon

Ensemble forecasts based on neural networks 
may be considered for real-time forecast 
guidance in case of hurricane and tropical 
storms 

 Forecasting of tracks may also be examined 28



Thank you
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