IMPROVEMENT IN HURRICANE INTENSITY FORECAST USING NEURAL NETWORKS

Tirthankar Ghosh and TN Krishnamurti Florida State University Tallahassee, FL-32306, USA

HFIP Annual Review Meeting, Jan 11-12, 2017 National Hurricane Center, Miami

Acknowledgement: HFIP, NOAA Award No. NA15OAR4320064

- Human brain takes best possible decision from past experience
- Information from the environment is taken by the sensory organs & passed to the brain through neurons (nerve cells)
- 10 billion nerves with 10000 synapses (meeting point of two nerves)

- Input branch (Dendrites)
 Output branch (Axon)
 Dendrites sends the received information through the cell body to the action
 - * Axon passes it to dendrite of the next neuron via synapse

IDEA IS FOLLOWED TO APPROXIMATE OUTPUT FOR A GIVEN SET OF INPUTS

$$Y = f\left(w_0 + \sum_{i=1}^k w_i x_i\right)$$

ACTIVATION FUNCTION

• Linear

• Logistic

• Hyper tangent

APPLICATIONS

- Classification
- Discrimination
- Estimation (time series prediction)
- Process identification
- Process control
- Etc ...

TYPES WE CONSIDER

• Multilayer Perceptron (MLP)

• Generalized Regression Neural Network

Information flows from input to output

LEARNING

- Previous observations on input (s) as well as output are provided repeatedly to estimate the neuron parameters (supervised learning)
- Modification of parameters for better performance (desired output)

CHOICE OF WEIGHTS

• Let $\{x_j^k, y^k\}$, k = 1, 2, ..., N; j = 1, 2, ..., p be a set of given observations

• Estimate y which minimizes the square error loss

$$ESS = \frac{1}{2} \sum_{k=1}^{N} \left[y^{k} - f(x^{k}, w) \right]^{2}$$

• The weights (here model weights) are so chosen that ESS would be minimum

$$m = \sum_{i=1}^{n} w_i m_i$$

where n = no. of input neurons, $w_i =$ synaptic weight for the ith neuron, $m_i =$ input to the ith neuron. It fits to our problem of combining some model forecasts through a linear combination. Let (o_j, M_{lj}) , l = 1, 2, ..., K; j=1,2, ..., N are, respectively, given observed and corresponding input values where K is number of models and N is the number of available cases.

Hence, for a single observation the weights are adjusted for error minimization as follows.

$$\begin{aligned} \frac{\partial ESS}{\partial w_i} &= -\sum_{j=1}^{N} \left(o_j - WM_j \right) n_{ji} \\ &= -\sum_{j=1}^{N} \varepsilon_j m_{ji} \qquad \qquad W = (w_1, w_2, \dots, w_n); M_j = (y_1, y_2, \dots, y_n)'; \varepsilon_j = \left(o_j - WM_j \right) \end{aligned}$$

For updating the movement, it should be in the opposite direction to the gradient.

$$w_i \leftarrow w_i - \alpha \frac{\partial ESS}{\partial w_i}$$

At each stage the error

$$\varepsilon_i \leftarrow o_i - WM_i$$

is to be computed and the updated NN weights are given by

$$W_i \leftarrow W_i + \alpha \varepsilon_j m_{ji}$$

where α is known as the learning rate.

TASKS

• Numbers of hidden layers (developer provided)

• Determining the learning rate (developer provided)

• Train the network

• Evaluate the performance

• Repeat the above process if not satisfied (iterative)

GRNN: BASED ON STANDARD STATISTICAL THEORY

The conditional mean $\mathbf{E}(Y|x)$ or the regression equation, Y(x), of Y for a given value of X, x, is given by

$$Y(x) = E(y/x) = \frac{\int_{-\infty}^{\infty} yf(x, y)dy}{\int_{-\infty}^{\infty} f(x, y)dy}$$
(1)

13

where f(x, y) is the joint continuous probability density function of X (vector valued) and Y. Y may also be vector valued and the corresponding estimate can be derived accordingly. The pdf has to be estimated from sample observations (**x**, **y**) when it is unknown. If (x_i,y_i), i=1,2, ...,n are the sample values of size n of the random variables (X,Y) then the estimated pdf $f(\hat{x}, y)$ is given by

$$f(\hat{x}, y) = \frac{1}{(2\pi)^{(p+1)/2}} \frac{1}{\sigma^{(p+1)}} \cdot \frac{1}{n} \sum_{i=1}^{n} \exp\left[-\frac{(x-x_i)^T (x-x_i)}{2\sigma^2}\right] \cdot \exp\left[-\frac{(y-y_i)^T (y-y_i)}{2\sigma^2}\right]$$
(2)

where p is the dimension of the vector variable X.

That is the estimate of the pdf is sum of the sample probabilities of width σ for each sample (x_i,

 y_i). Substitution of estimated pdf obtained in (2) to (1) provides the desired conditional mean

Y(x), which is

Taking $D_i^2 = (x - x_i)^T (x - x_i)$ and after the integration the expression for the conditional mean obtained, by Specht(1991), is

$$Y(x) = \frac{\sum_{i=1}^{n} y_i \exp\left(-\frac{D_i^2}{2\sigma^2}\right)}{\sum_{i=1}^{n} \exp\left(-\frac{D_i^2}{2\sigma^2}\right)}$$
(3)

Parzen (1962) and Cacoullos (1966) have shown the consistency and asymptotic convergence of the estimate to the true value at all sample points where the density is continuous provided

 $\sigma(n) \to 0 \text{ as } n \to \infty$ and $n \sigma^p(n) \to \infty \text{ as } n \to \infty$. Specht (1991) had based it on the Gaussian

kernel function.

Therefore, the estimated conditional mean is a weighted average of observed y_i 's where each observation is weighted exponentially according to its Euclidean distance from **x**.

GRNN: SCHEMATIC PRESENTATION

ADVANTAGES

• No user choice for the network architecture

• Only one parameter to be estimated

• Does not get trapped into the local optima

• Requires less number of data for training

• Useful for continuous data

Results: Season 2012 Intensity errors

INTENSITY ERRORS: SEASON 2014

SEASON 2015

Model Skills: 2015 Season

SEASON 2016: INTENSITY ERRORS

SKILLS: 2016 SEASON

Gaston 2016

Nicole 2016

Matthew 2016

CONCLUDING REMARKS

• Seasonal summaries indicate that the improved MMSE carries, consistently, least intensity forecast errors

• For longer forecast leads, beyond 60hrs, Neural Networked based MMSE performs better than the earlier forecast leads. It is very useful for government planning and evacuation, if needed

• Individual storm forecast errors show that none of the models is consistently best

CONCLUDING REMARKS CONTD ...

- Improved MMSE is the best or the second best performer for individual storms as well
- Proposed method is providing consistent consensus forecasts having least forecast errors which be depended upon
- Ensemble forecasts based on neural networks may be considered for real-time forecast guidance in case of hurricane and tropical storms
- Forecasting of tracks may also be examined

Thank you