

and a set of the

COAMPS-TC 2016 Version, Performance, and Future Plans

James D. Doyle, J. Moskaitis, R. Hodur¹, S. Chen, H. Jin, Y. Jin, W. Komaromi, A. Reinecke, S. Wang Naval Research Laboratory, Monterey, CA ¹/ES/SAIC, Monterey, CA

Sponsors: ONR, NOAA HFIP, NRL, PMW-120

Hurricane Patricia from the International Space Station (Scott Kelly, NASA)

COAMPS-TC System Overview

- •Analysis: No cycling or Cycling: 3D-Var (NAVDAS), 4D-Var, EnKF DART
- •Atmosphere: Nonhydrostatic, moving nests, TC physics
- •Ocean: 3D-Var (NCODA), 1D, 3D ocean (NCOM), wave (SWAN, WWIII)
- Ensemble: ICs, BCs, & vortex perturbations; EnKF & ETKF options
- •**Operations:** 45-15-5km for <u>COTC</u> (NAVGEM ICs BCs) & <u>CTCX</u> (GFS ICs BCs)
 - **Real Time:** i) Fully coupled (NCOM), ii) 27-9-3 km 11 member ensemble

Vongfong (2014) Simulated Radar Reflectivity

2015 Operational Statistics

- For position, CTCX errors similar to HWRF. COTC track errors are similar to or better than GFDN.
- For intensity, CTCX has lowest errors for lead times beyond 48 h. COTC outperformed GFDN. Negative intensity bias.
- Extremely large sample of cases in 2015 due to El Niño

2016 Operational Statistics

COTC (NAVGEM) and CTCX (GFS) continued to perform very well in 2016
CTCX was the top limited area dynamical model for track, and trailed HWRF

Position Error

2016 Operational Statistics

E. Pacific Basin

Intensity Error & Bias

- For track, HWRF is the best performing model overall but is nearly tied with CTCX through 84 h lead time. GFDL and COTC are well behind.
- For intensity, HWRF and CTCX have similar intensity errors through 24 h, but after that HWRF has the lowest intensity MAE. All models have a negative intensity bias.

Atmosphere-Ocean Coupling 04E SSTs, 10-m winds, TC position and track

10-m wind and sea-surface temperature, TC = ep042016, DTG = 2016071006, Lead time = 0 h, Real-time COAMPS-TC

- 2016 model has atmospheric model coupled to NCOM ocean model
- Example: SST evolution for 04E through a N-S oriented SST gradient

Atmosphere-Ocean Coupling 07L SSTs, 10-m winds, TC position and track

- NCOM model run at 5 km resolution for ocean response under TC
- Example: SST evolution for 07E, showing storm-induced SST cooling

Atmosphere-Ocean Coupling

Hurricane Leslie (2012):

2012090600 forecast

New Surface Drag Parameterization

A series of C_d formulations have been evaluated for a large retrospective sample, including 44 TCs during 2012-2015 in the ATL, WPAC and EPAC basins.

- The C_{dM} performs best for intensity for **uncoupled forecasts**
- The C_{dL} performs best for intensity for coupled forecasts (basis for 2016 COTC)
- The C_d has significant impact on intensity distribution and pressure-wind relation

ONR Tropical Cyclone Intensity (TCI) 2015 Unique Observations of Marty, Joaquin, Patricia on October 23, 2015 at 1805 UTC

-82 -80 ≥78>-76 74 72 -70 68 -TCI flight montage Hurr Joaquin Oct

- Unprecedented set of dropsonde and **HIRAD** observations in Hurricanes Marty, **Joaquin**, Patricia
- ~800 sondes deployed in 4 TCs in 11 WB-57 flights.
- Systematic high-resolution obs of inner core and outflow from 60 kft.
- Verification & DA experiments underway

WB-57 Flight Track and Dropsondes in Hurricane Patricia

COAMPS-TC Summary and Future Plans

COAMPS-TC Much Improved for Track & Intensity in 2015/16:

- Improved "spin-down" and intensity error (new vortex initialization; new C_D param.)
- Improved track errors (new initialization; new terrain)
- Coupled COAMPS-TC with ocean model NCOM (2016)
- Multi-model high-res. ensemble (NOAA/Navy) and air-ocean coupling promising.

COAMPS-TC Future Plans:

- 2017 Priorities (Target 4 km resolution)
 - TC physics: new PBL (EDMF), refinement to C_D parameterization
 - Analysis: Improvements to vortex initialization
 - Coupling: Ocean (NCOM), ocean DA with NCODA
 - Ensemble: 3 km ensemble (w/ HFIP): WATL, EPAC, WPAC (11 member)
- 2018+ Priorities
 - TC physics:
 - Analysis:
 - Ensemble:
 - Coupling:
 - Resolution:
- Emphasis on PBL, fluxes, microphysics 4D-Var/EnKF, satellite DA Stochastic physics Ocean, waves, coupled DA i) ~1 km (nest following)
 - ii) ~4 km basin scale

• Utilize field observations: ONR TCI,NASA HS3...

6-120h Simulated Radar Reflectivity (00Z 2 Oct 2013)