

HWRF Performance Verification in 2016

The HWRF Team

Environmental Modeling Center, NCEP NOAA/NCWCP, College Park, MD 20740, USA.

Zhan Zhang, Avicha Mehra, Samuel Trahan, Mingjing Tong, Qingfu Liu, Weiguo Wang, Bin Liu, Lin Zhu, Jason Sippel, Banglin Zhang, Sergio Abarcoa, Keqin Wu, Hyun-Sook Kim, Dan Iredell, Jili Dong, Chun-Sil Jin, **Vijay Tallapragada**

& Several collaborators (extended team members) at NHC, JTWC, HRD/AOML, GFDL, URI, ESRL, DTC, HFIP/JHT PIs and various international agencies

Highlights of FY16 HWRF Upgrades

System & Resolution Enhancements

- T&E with new 2016 4D-Hybrid GDAS/GFS IC/BC
- Upgrade dynamic core from WRF3.6a to WRF3.7.1a (with bug fixes)
- Smaller time step (dt=30 s vs. 38 4/7 s)
- Increase the size of nested domains
- More products: MAG and AWIPS2

Initialization/DA Improvements

- GSI upgrades; new data sets for GSI (CrIS, SSMI/S, METOP-B changes)
- Turn on Data Assimilation for all storms in East Pacific

Physics Advancements

- Implement new GFS PBL (2015 version)
- Upgrade to new scale-aware SAS convection scheme for all domains
- Update momentum and enthalpy exchange coefficients(Cd/Ch)
- Improved vertical wind profile in the surface and boundary layer

First time in 2016....

- Implementation on WCOSS Cray
- Use RTOFS initialization for EPAC storms to have more realistic ICs and improved RI forecasts; ocean coupling for CPAC
- One-way coupling to wave model (Hurricane Wave Model)
- Use of dev-ecflow for accelerated T2O

30-

#CASE 277

SKILL PLOT RELATIVE TO THE CLP5 MODEL

Forecast lead time (hr)

HWRF project - NOAA/NCEP/EMC

HWRF in the 2016 North Atlantic Basin (Alex to Otto)

Real-Time Performance

-32 SKILL PLOT RELATIVE TO THE DSHP MODEL

Forecast lead time (hr)

HWRF project - NOAA/NCEP/EMC

CASE 279

HWRF in the 2016 Eastern Pacific Basin (Agatha-Otto)

Real-Time Performance

CASE 358

327

HWRF in the 2016 Western Pacific Basin (Nepartak to Nock-Ten)

Intensity skill

HWRF project - NOAA/NCEP/EMC

SKILL PLOT RELATIVE TO THE ST5D MODEL

Forecast lead time (hr)

Real-Time Performance

track skill

HWRF project - NOAA/NCEP/EMC

CASE 361

Forecast lead time (hr)

SKILL PLOT RELATIVE TO THE C120 MODEL

HWRF in the 2016 North Indian Basin (Roanu-Vardah)

Real-Time Performance

HWRF FORECAST - BIAS ERROR (KT) STATISTICS VERIFICATION FOR INDIAN OCEAN 2016

HWRF in the 2016 Southern Hemisphere

Real-Time Performance

HWRF FORECAST - BIAS ERROR (KT) STATISTICS VERIFICATION FOR SOUTHERN HEMISPHERE 2016

RI POD in AL/EP/WP Basins

Intensity Distribution

(From 2016 real time)

Intensity (kt)

Intensity (kt)

Intensity (kt)

24hr Intensity Change Distribution

(From 2016 real time)

24-hr Intensity Change (kt)

-50 -40 -30 -20 -10 0 10 20 30 40 50

24-hr Intensity Change (kt)

-50 -40 -30 -20 -10 0 10 20 30 40 50 24-hr Intensity Change (kt)

Basin-scale HWRF Real time Parallel

Basin-scale Configuration: nx=864, ny=632 ($160^{\circ}x60^{\circ}$), dx=0.09, dy=0.09, ~ 12 km domain center fixed at (80.0W, 25.0N)

The basin-scale model does have the ability to forecast the formations of almost all storms.

Hurricane Matthew (14L 2016) became a named storm at 15:00 UTC 28 September 2016.

Basin-scale HWRF forecast its formation at 12:00 UTC 23 September 2016.

HWRF Basinscale: TC Intensity Vmax Storm: 2016092312

HYCOM-HWRF Coupling Real Time Parallel

HWRF FORECAST - TRACK FORECAST SKILL (%) STATISTICS VERIFICATION FOR NATL BASIN 2013-2015

HWRF FORECAST - INTENSITY RELATIVE SKILL (%) STATISTICS VERIFICATION FOR NATL BASIN 2013-2015

HWRF FORECAST - TRACK FORECAST SKILL (%) STATISTICS VERIFICATION FOR EPAC BASIN 2013-2015

HWRF FORECAST - INTENSITY RELATIVE SKILL (%) STATISTICS VERIFICATION FOR EPAC BASIN 2013-2015

HWRF based ensemble Real time Parallel

≻Use 2016 operational deterministic HWRF model except for

- Less horizontal resolution: 27/9/3km vs. 18/6/2km
- Less vertical resolution: L43 vs. L61;
- No GSI due to lack of GDAS data;

≻IC/BC Perturbations (large scale): 20 member GEFS.

- Model Physics Perturbations (vortex scale):
 - Stochastic Convective Trigger Perturbations in SAS: -50hPa to + 50hPa white noise ;
 - Stochastic boundary layer height perturbations in PBL scheme, -20% to +20%;
 - Stochastic Cd perturbation;
 - Stochastic initial wind speed and position (TCVital) perturbations considering best track uncertainty.

Difference from 2015 HWRFES:

- 1. Larger D02 and D03;
- 2. Scale-aware convection scheme turned on for all domains.

Secondary Eyewall in HWRF

Operational cycles:

Matthew, 14L, 2016

-September 28-31, ~30% of the cycles show a SE towards the end of the integration
-October 01-05, ~80% cycles show SE & ERC

HWRF Simulated Intensity Oscillation and Hurricane Hook for Matthew 14L, 2016

17N

300

400

500

100 -

200

300

400

500 600 700 12N

12N.

13N

est Impro13Nent Program 14N

HWRF WV: MATTHEW 2016093006 f24

16N 15N 14N 13N 12N 12N 12N 26Wm CiWer (14W, 72'3W) 72W 71W 70W 69W Forecast Void: 062010CT2016 Intensity: 110kts NCEP HWRF – MATTHEW14L 2016093006 – F024 Cross sections at 72.5W: Total Wind (kts), valid: 2016100100

14N

15N

15N

and Ma

16N

Experimental Product

nal Winds (kts

- Large fluctuations in intensity in model forecasts
- Storm structure collapse
- Not happened in observation

nne

HWRF Simulated Intensity Oscillation and Hurricane Hook for Matthew 14L2016

10

NOAA

Intensity Oscillation and Spin-Down due to both VI/DA and Hurricane Hook

Comparison of Initial Storm Sizes (Model vs. Best) Hurricane Matthew, 14L, 2016

In most of cycles, model initial storm sizes are bigger than Obs.

Strong Intensity Forecast Bias for INVEST INVEST 99L

NOAR

Challenges and Issues

- Large fluctuations in intensity forecasts
- Initial intensity spin up/down
- Track forecasts impacted by LBC
- Over-prediction of intensity for INVEST storms