

Strategy for Hurricane Modeling in NEMS

Avichal Mehra, Vijay Tallapragada and the EMC Hurricane and Mesoscale

Teams

Environmental Modeling Center NOAA / NWS / NCEP

What is NEMS?

- NEMS stands for: NOAA's Environmental Modeling System
- A shared, portable, high performance software superstructure and infrastructure
- For use in operational prediction models at the National Centers for Environmental Prediction (NCEP)
- Leveraging NUOPC related community developments

NEMS Architecture

Unification of operational hurricane modeling in NEMS

1. Strategies for unified regional (meso-scale) models in the NEMS framework

- Be able to meet the performance of current operational HWRF
- Accommodate future development strategies including coupling to ocean, waves, land, surge and hydrology
- Retain and expand community interactions fostered by HFIP
- Flexible options for inner-core data assimilation
- Enable future ensemble strategies and potential genesis and 7-day intensity forecasts

2. Strategies for unified global model with multiple moveable nests

- Take advantage of NGGPS/FV3 supported development of non-hydrostatic global model in NEMS with high resolution nests for hurricanes
- Leverage NMMB and GFS physics unification
- Transition regional hurricane model components to global system for seamless prediction of hurricanes and severe weather

3. Strategies for serving the next-generation needs of operational tropical cyclone forecasters

• Expand the products to include deterministic and probabilistic forecast guidance on genesis, rapid intensity changes, size, structure, storm-surge, rainfall, flooding and inundation and warn on forecasts

HNMMB Long-Term Plans

2016 2017 2018 2019 2020

GFDL ——— HNMMB 10-member HWRF/ NEMS Global Nests (NGGPS/FV3)

HWRF Operational Model Continues Followed by Ensembles

Basin-Scale HWRF/NMMB——Tropical/Global NMMB Domain

Hurricane Models take over Hurricane Wave Forecasts

Development, T&E and Implementation Plans for HNMMB (supported by HFIP and NGGPS)

2016 June-Nov: uncoupled real-time demo

2016 Nov: single-storm, coupled, no-DA ready retrospectives

2016 Dec- 2017 Feb: HNMMB pre-implementation test

2017 March: HNMMB EMC CCB and code hand-off

2017 May: HNMMB replaces GFDL operationally

Current status

Domain

Flowchart

Physics options

Hurricane NMMB

- NMMB: Non-hydrostatic Multi-scale Model on the B grid. Being used in NCEP operational NAM and SREF.
- HNMMB: Advanced Hurricane Model using NEMS framework
 - Vortex initialization
 - Two-way interactive moving nests
 - Well-tuned hurricane Physics package
 - Designed to address NHC's operational needs
- Development supported by HFIP and HIWPP (with EMC/HRD collaboration)
- Provides high-resolution intensity forecast guidance to NHC along with HWRF (planned replacement for GFDL hurricane model)

Status of HNMMB at EMC (Jan. 17)

- 1. HWRF physics package and storm motion algorithm have been added to HNMMB.
- 2. HNMMB vortex initialization has been developed.
- 3. HNMMB restart capability has been implemented.
 - (1), (2), and (3) via active collaboration between EMC-HRD funded by HIWPP
- 4. Post and tracker scripts are working with NMMB.
- 5. Python workflow has been built.
- 6. HNMMB ran in real-time on Theia for 2016 Hurricane season (using 1-5)
- 7. Retrospectives (2014-2016) completed using 2016 GFS.
- 8. Ocean Coupling is ready. Redo retrospectives using 2017 GFS.

Status of HNMMB at EMC (Jan. 17)

Two options for earth-system component coupling:

- 1. EMC legacy coupler (leverage HWRF developments)
 - -- operationally ready
 - -- extensively tested, robust
 - -- configured for 3-way interactions (air-ocean-wave)
- 2. NEMS-NUOPC coupler
 - -- unified modeling (Future)
 - -- based on ESMF regridding/functionality/portability
 - -- extensible to multiple-storm/component configurations
 - -- extensible to FV3/NEMS based configurations
 - -- leverage other coupled systems (NWS, NRL, NASA)

Regional HNMMB Domains

Long-Term Strategy: Implement multiple static and moving nests globally, with oneand two-way interaction and coupled to other (ocean, wave, sea ice, surge, inundation, etc.) models using NEMS-NUOPC infrastructure.

Design of HNMMB Workflow

Physics options in HNMMB

Physics Package	Option
microphysics	Fer_hires
shortwave	RRTM
longwave	RRTM
turbulence	GFSHUR
convection	SASHUR
sfc_layer	GFDL
land_surface	noah

2014-2016 Retrospective Statistics for HNMMB

2014-16 Atlantic Basin: Early Model

TATES OF MIN

HWRF FORECAST - TRACK ERROR (NM) STATISTICS VERIFICATION FOR ATLANTIC BASIN 2014-2016

HWRF FORECAST - BIAS ERROR (KT) STATISTICS VERIFICATION FOR ATLANTIC BASIN 2014-2016

HWRF FORECAST — INTENSITY VMAX ERROR (KT) STATISTICS VERIFICATION FOR ATLANTIC BASIN 2014—2016

- HNMMB has lower track errors than GFDL at all lead times.
- Intensity errors are significantly lower than GFDL and comparable to HWRF but both errors and bias are larger than HWRF at longer lead-times but still lower than GFDL.

2014-16 Atlantic Basin: Relative to GFDL (interpolated)

Forecast lead time (hr)

HWRF FORECAST — INTENSITY RELATIVE SKILL (%) STATISTICS VERIFICATION FOR ATLANTIC BASIN 2014-2016

HNMMB has improved track skills as compared to GFDL with an average improvement of more than 8%. It also has improved intensity skills with a mean improvement of >15%.

HWRF project - NOAA/NCEP/EMC

2014-16 East Pacific Basin: Early Model

HWRF FORECAST - BIAS ERROR (KT) STATISTICS VERIFICATION FOR EASTERN PACIFIC BASIN 2014-2016

HWRF FORECAST - TRACK ERROR (NM) STATISTICS

- For East Pacific also, HNMMB has lower track errors than GFDL at all lead times but larger than HWRF.
- Intensity errors are again significantly lower than GFDL and comparable to Official and HWRF.
- Bias errors are negative but much lower than both Official and HWRF.

2014-16 East Pacific Basin: Relative to GFDL

(interpolated)

HWRF FORECAST - TRACK FORECAST SKILL (%) STATISTICS

HWRF FORE

HWRF FORECAST - INTENSITY RELATIVE SKILL (%) STATISTICS VERIFICATION FOR EASTERN PACIFIC BASIN 2014-2016

HNMMB has improved track skills as compared to GFDL with an average improvement of more than 15%. It also has significantly improved intensity skills with a mean improvement of >25%.

HNMMB verification Statistics: Conclusions

- Compared with GFDL, HNMMB consistently shows improved performance for track and intensity skill for the North Atlantic basin (based on 2014-16 seasons)
- Compared with GFDL, it also consistently shows improved performance for track and intensity skill for the North East Pacific basin (based on 2014-16 seasons)
- Results are different from HWRF and usually exhibit larger track errors in comparison especially at longer lead-times
- Redo retrospectives with 2017 GFS data (plus ocean coupling plus other upgrades) to assess these improvements for final stats before operational implementation (EMC)
- Check impact on NHC consensus model tracks and intensity forecasts before operational implementation (NHC)

HNMMB: Current and Future Tasks

- Redo retrospectives with 2017 GFS data plus ocean coupling plus other upgrades
- Data Assimilation developments (sync with HWRF)
- Nesting under active development with NESII/ESRL using NEMS/NUOPC
- Basin-scale with multi-nest configuration in NEMS (includes genesis capability)
- Potential migration from NMMB to FV3-based NGGPS dycore under NEMS

HWRF vs GFDL vs HNMMB

	HWRF	GFDL	HNMMB
Dycore	Non-hydrostatic, NMM-E	Hydrostatic	Non-hydrostatic, NMM-B
Nesting	18/6/2 kms; 75°/25°/8.3° , Full two-way moving	½.°,1/6°,1/18°; 75°/11°/5°, Two-way moving with bc	18/6/2 kms; 75°/12°/8°, Full two-way moving
Data Assimilation and Initialization	Self-cycled two-way HWRF EnKF-GSI with inner core DA (TDR); Vortex relocation & adjustment	Spin-up using idealized axisymmetric vortex	NDAS, NLDAS with partial cycling; Vortex relocation & adjustment
Physics	Updated surface (GFDL),GFS- EDMF PBL, Scale-aware SAS, NOAH LSM, RRTM, Ferrier	Surface (GFDL), GFS PBL(2014), SAS, GFDL LSM, RRTM, Ferrier	Surface (GFDL), GFS PBL (2015), SAS, NOAH LSM, RRTM, Ferrier
Coupling	MPIPOM, RTOFS/GDEM Wavewatch-III	MPIPOM, RTOFS/GDEM, No waves	HYCOM, RTOFS/NCODA, No waves
Post-processing	NHC interpolation method, GFDL tracker	NHC interpolation Method, In-line tracker	NHC interpolation method, GFDL tracker
NEMS/NUOPC	No	No	Yes with moving nests

Q3FY17 Hurricane NMMB V1.0.0

Project Status as of 10/19/16

Project Information and Highlights

<u>Lead</u>: Avichal Mehra, EMC and Steven Earle, NCO **Scope:**

- 1. Replace GFDL hurricane model with Hurricane NMMB (H-NMMB)
- 2. Initial operating capability for NHC basins (ATL, EPAC and CPAC) with maximum 5 storms for any given cycle
- 3. Transition and tune HWRF physics, initialization, and ocean coupling for H-NMMB

Expected Benefits:

- 1. Improved track & intensity forecast skill compared to GFDL and/or operational HWRF
- 2. Improved forecast guidance to NHC to fulfill their mission
- 3.Explore high-resolution hurricane ensemble products for intensity and structure

Issues/Risks

<u>Issues:</u> Complex T&E due to dependency on NEMS/GSM and RTOFS upstream requirements

Risks: Implementation dates are dependent on completion of T&E **Mitigation:** Conduct T&E as soon as (or along with) NEMS/GSM and RTOFS retrospective data are available.

Scheduling

Milestone (NCEP)	Date	Status
Identify preliminary System Configuration	11/01/2016	
Start preliminary evaluation	11/01/2016	
Finalize System configuration	01/10/2017	
Initial coordination with SPA team	01/10/2017	
Freeze codes for real-time and retrospective runs	01/10/2017	
Pre-CCB Briefing to EMC management	02/15/2017	
Completion of full retrospective runs and external evaluation	02/15/2017	
EMC CCB/NCEP OD approval	02/28/2017	
Deliver final code to NCO (including downstream codes)	02/28/2017	
Technical Information Notice Issued	03/07/2017	
Special event if applicable		
Complete 30-day evaluation and IT testing	05/15/2017	
Final Management Briefing	05/22/2017	
Operational Implementation	05/31/2017	

Resources

Human Resources: 3 FTE full time for 6 months.

Funding Sources: STI

Compute: Archive:

Management Attention Required

Potential Management Attention Needed

On Target

www.emc.ncep.noaa.gov/gc_wmb/vxt/HNMMB/

