





# Plans for Jet (HPC) and Research to Operations

Vijay Tallapragada, NWS/NCEP/EMC

HFIP Annual Meeting, November 7, 2018





### **Keys to Success**



- Partnerships: NOAA research working closely with operations (NWS/NCEP, DOD/JTWC), Federal & academic partners (NASA, NSF, ONR, NRL, NCAR), international collaborations (global TC forecasts)
- Diversity: Manpower to evaluate model performance with hurricane datasets
- Outreach and community participation (e.g. FFOs)
  - Developed and facilitated next generation of TC researchers for NOAA
- HFIP R&D computing
- Integrated use & support of testbeds (JHT, DTC, JCSDA)



# NOAA R&DHPC Dedicated to Hurricanes (Jet Machine in Boulder)

|                                 | Install<br>Date | Total<br>Cores | Performanc<br>e<br>(Tflops) | Storage<br>(TB) |
|---------------------------------|-----------------|----------------|-----------------------------|-----------------|
| Phase 1<br>(Njet)               | Aug 2009        | 3184           | 35.6                        | 350             |
| Phase 2<br>(Tjet)               | Aug 2010        | 10600          | 113.0                       | 416             |
| Phase 3<br>(Ujet)               | Oct<br>2011     | 16648          | 182.0                       | 1166            |
| Phase 4<br>(Sjet)               | Aug 2012        | 22088          | 272.0                       | 1613            |
| Phase 5<br>(Vjet)               | Aug 2014        | 24456          | 340.26                      | 3261            |
| Phase 6<br>(Xjet)               | Oct<br>2015     | 32520          | 576                         | 3773            |
| Phase 7<br>(Xjet+)<br>expansion | Aug<br>2016     | 45388          | 820                         | 4400            |



Dedicated to hurricane research, community engagement and advanced R2O demonstration (including real-time experiments)





#### 2018 Jet Upgrades



Jan: New Ifs1 in production

Aug: Compute cold air isolation completed for all Jet

systems

Nov: Infiniband backbone (disk to compute

bandwidth) upgrade

Dec: Ethernet management/provisioning network

upgrade

Dec: HW to support SW stack expansion

Dec: Ifs1 upgrade: +1PB and flash tiers for small file

performance improvement

Dec: kJet





### 2019 Jet Upgrades



2019: Pre-real-time season Jet upgrades

Batch Scheduler: SLURM replacing MOAB, ~March

2019

CentOS 7.x OS upgrade and SW stack refresh

2019: Potential Pre-real-time season Jet upgrades

APM (Allipse) Force and Poperts for debugging an

ARM (Allinea) Forge and Reports for debugging and

profiling

Compute System Provisioning and Management SW





### **Scheduler Changes**



#### SLURM batch system scheduler

- Transition from MOAB to SLURM is being extended until late next quarter.
- Details and new schedule are TBD.
- Currently Selene and a 238 node uJet partition is available for SLURM testing for select testers.





### **Compute Changes to Jet**



#### 2018 Jet Compute configuration changes

Nov: uJet partial decommissioning (334 node, 4008 core, HFIP allocation reduced by ~12%)

Dec: kJet available (360 node, 14,400 core, HFIP allocation is TBD)





#### **Jet Core Allocations**



**Sept'18: Core Allocation** 

|        |       |       |       |       |        |      | Total  |
|--------|-------|-------|-------|-------|--------|------|--------|
| Cores  | tJet  | uJet  | sJet  | vJet  | xJet   | kJet | Cores  |
| HFIP   | 5,976 | 7,080 | 5,440 | 2,368 | 15,456 | 0    | 36,320 |
| Others | 3,120 | 0     | 0     | 2,240 | 4,128  | 0    | 9,488  |
| Total  | 9,096 | 7,080 | 5,440 | 4,608 | 19,584 | 0    | 45,808 |

Dec'18: Post kJet(TO-5) Core Allocation

| Cores  | tJet  | uJet  | sJet  | vJet  | xJet   | kJet <sup>1</sup> | Total<br>Cores |
|--------|-------|-------|-------|-------|--------|-------------------|----------------|
| HFIP   | 5,976 | 2,856 | 5,440 | 2,368 | 15,456 | 0                 | 32,096         |
| Others | 3,120 | 0     | 0     | 2,240 | 4,128  | 14,400            | 23,888         |
| Total  | 9,096 | 2,856 | 5,440 | 4,608 | 19,584 | 14,400            | 55,984         |

<sup>&</sup>lt;sup>1</sup>Final kJet Allocation is TBD by Allocation Committee





### **Jet File Systems**



#### **Jet File Systems Dec'18**

|                   | lfs3¹ | lfs1 | Total |
|-------------------|-------|------|-------|
| Install Date      | 2014  | 2018 |       |
| Capacity (PB)     | 3.10  | 3.42 | 6.52  |
| Quotable (PB)     | 2.48  | 2.74 | 5.22  |
| Others Quota (PB) | 0.92  | 1.48 | 2.40  |
| HFIP Quota (PB)   | 1.56  | 1.26 | 2.82  |

<sup>1</sup>Ifs3 will likely have to be replaced by Aug 2020





# 2018 Real-time Reservations Summary



- •Application process completed on schedule but there were several scaling, timing, and workflow issues which had to be resolved.
  - •6 projects with 29 reservations authorized (16,774,000 cr-hrs/mo)
  - •16 reservation adjustments required after July 3rd
- •The MOAB reservation batch system ran without incident
- •15 help tickets for system and allocation issues

#### •Major Issues:

- Unreleased/unused Reservations
  - Multiple storms in one reservation
  - Unused reservations not released
- •1 project reported slow performance on Ifs1 in the last week of Oct
- •1 project experienced variable job performance due to overloading a single lfs1 server





# Real-time Reservation Projects run during the 2018 Season

| Real-time Reservation         |                                        |              |
|-------------------------------|----------------------------------------|--------------|
| Project                       | User Name                              | Organization |
| HWRF driven by FV3GFS         | Avichal Mehra (base project PI), Biju- | EMC          |
| Parallel Experiment           | Thomas (RT PI), Bin Liu (Tech.Lead)    |              |
|                               | Avichal Mehra (Base PI), Zhan Zhang    | EMC          |
| HWRF Ensemble: rthwrf-EPS     | (RT PI), Weiguo Wang (Tech.Lead)       |              |
|                               | Shian-Jiann Lin (Base PI), Andrew      | GFDL         |
| 3-km nested hfvGFS            | Hazelton (RT PI), Matt Morin           |              |
| (Atlantic)                    | (Tech.Lead)                            |              |
|                               | Ghassan Alaka, Jr. (Base and RT PI)    | AOML/HRD     |
| Real-time Basin-Scale HWRF    | Jonathan Poterjoy, Xuejin Zhang, and   |              |
| (w/ cycled data assimilation) | Gopalakrishnan Sundararaman            |              |
| HMON Ensemble real-time       | Avichal Mehra (Base-PI), Weiguo        | EMC          |
| experiment: hwrfv3            | Wang (RT-PI), Lin Zhu (Tech. Lead)     |              |
| FV3GFS, C768 with data        | Georg Grell (Base and RT PI), Judy     | ESRL, GSD    |
| assimilation (DA) cycle       | Henderson (Tech.Lead)                  |              |
| Real-Time Analog Ensemble:    | William E. Lewis (Base and RT PI),     | UWI.edu      |
| hwrf-anen                     | Chris Rozoff (New role or Tech.Lead)   |              |







# 2019 Real-time Reservations Recommendations



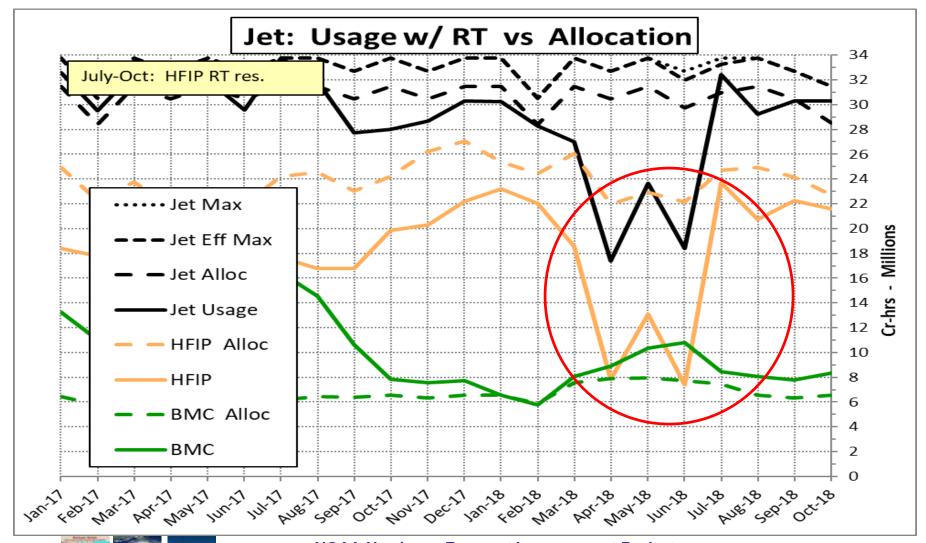
- Improve scaling, timing, and workflow data supplied with applications
- Improve reservation structure for multistorm workflow
- Improve release of unused reservations
- •For large data writes "Stripe" data to prevent unstable disk performance





# 2019 Jet Reservations Tasks/Issues



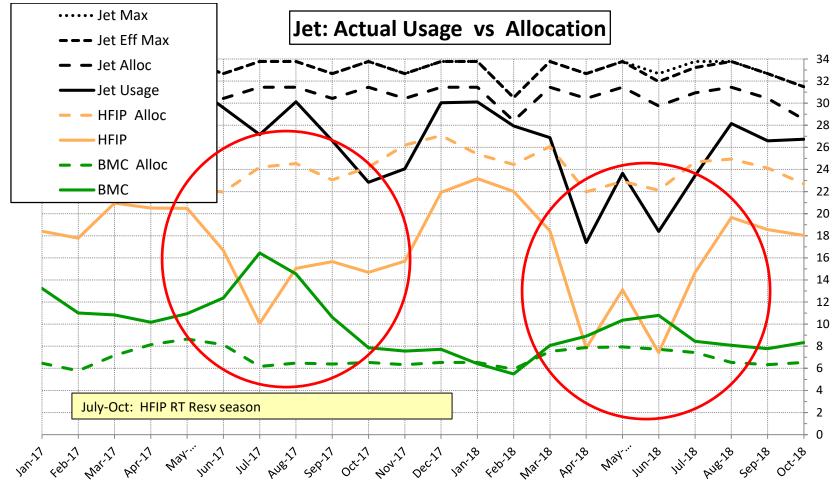

- Reservations with SLURM (release/recreation, testing)
- Develop reservation utilization charts
- •Jet SW upgrades: OS upgrade. SW stack upgrades and consistency with Theia.





## **Jet Usage Statistics**










### **Jet Usage Statistics**









# Major Projects and Current Allocations



| hwrfv3    | 5.5 M hrs |
|-----------|-----------|
| hybda     | 1 M hrs   |
| hur-aoml  | 4 M hrs   |
| hfv3gfs   | 8.2 M hrs |
| dtc-hurr  | 0.4 M hrs |
| hfip-gfdl | 0.5 M hrs |
| hfip-hda  | 0.5 M hrs |
| swash     | 0.5 M hrs |

Total available HFIP allocations: 21.6 M hrs per month (reduced from 24.5 M hrs due to ujet reconfiguration for kjet)





### Federal Funding Opportunities



#### 2 companion Federal Funding Opportunities (FFO)

- First FFO is two separate competitions: HFIP and NGGPS
  - HFIP: Collaborative projects with EMC or NHC researchers
  - NGGPS: Collaborative projects with EMC or CPC researchers, including S2S projects
- Estimated funds available: \$1M for HFIP, \$2.5M for NGGPS
- 2-year projects, maximum funding \$200K/year
- Project start date: September 1, 2018





# HFIP Funded Projects (2018-2020)



| Advanced DA Techniques for Satellite-Derived Atmospheric Motion Vectors from GOES 16/17 in the HWRF                    | Agnes Lim, U.<br>Wisconsin |
|------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Using Dynamically-Based Probabilistic Forecast Systems to Improve the NHC Wind Speed Products                          | Andrea<br>Schumacher, CSU  |
| Rapid Intensification Changes: Improving Sub-Grid Scale Model Parameterization and Microphysical-Dynamical Interaction | Ping Zhu, FIU              |
| New Frameworks for Predicting Extreme Rapid Intensification                                                            | Kerry Emanuel,<br>MIT      |
| Enabling Cloud Condensate Cycling for All-Sky Radiance Assimilation in HWRF                                            | Ting-Chi Wu, CSU           |
| Evaluating Initial Condition Perturbation Methods in the HWRF Ensemble Prediction System                               | Ryan Torn, SUNY<br>Albany  |





## NGGPS Funded Projects (2018-2020)



| Convection Permitting Global Prediction: Evaluation for Operational Application in NOAA                                                      | Cliff Mass, U.<br>Washington |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Improving Weeks 3-4 Weather Prediction through a Global CAM Version of the NOAA Unified Coupled Modeling Framework                           | Jim Kinter, GMU              |
| Improving Cloud Processes in the NCEP Global Models                                                                                          | Steve Krueger, U. Utah       |
| Using Process-Oriented Diagnostics with Feature-Based Verification Software to Improve Models                                                | Brian Colle, SUNY<br>Albany  |
| Advancing 4D-Variational Ocean Data Assimilation Capabilities at NCEP                                                                        | Steve Penny, UMD             |
| Sub-grid Cloud Overlap Radiation Enhancements for Global Weather Predictions                                                                 | Mike Iacono, AER             |
| The Unified Gravity Wave Physics in the Vertically Extended Atmospheric Models of NGGPS: Resolution-Aware Coupling and Verification with FV3 | Valery Yudin, U.<br>Colorado |





## NGGPS Funded Projects (2018-2020)



| Continued Assimilation and Enhancement of the Blended High-<br>Resolution Snow Depth Analysis into NWP Models for Global and<br>Regional Applications                      | Cezar Kongoli, UMD                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Development and Application of Microphysics Specific and Distribution Consistent Microwave Radiance Forward Models for the FV3 Model Under the JEDI Framework              | Fuqing Zhang, PSU                          |
| The Impact of Ocean Resolution in the UFS on the Subseasonal Forecast of Extreme Hydrological Events                                                                       | Christina Stan, GMU                        |
| Use of Satellite Data to Evaluate Connections Between the Radiation, Cumulus Convection, and Microphysics Parameterization Schemes and their Scale Sensitivity for FV3-GFS | Shaowu Bao, Coastal<br>Carolina University |
| Scale-Dependent Covariance Localization for the FV3-GDAS 4DEnVar Data Assimilation System to Improve Global and Hurricane Predictions                                      | Xuguang Wang, U.<br>Oklahoma               |





### **Key Strategies**



#### 4. Increase HPC Capacity

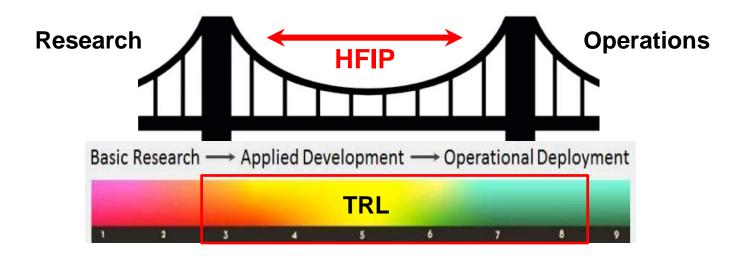
- NOAA R&D and operational computing to support HAFS development
- Sustain modeling and software engineering expertise
- Match with technological innovations



| Compute        | (core                | FY2018 | FY2019 | FY2020 | FY2021 | FY2022 | FY2023 |
|----------------|----------------------|--------|--------|--------|--------|--------|--------|
|                | hr/month)            |        |        |        |        |        |        |
| Hurricane      | Prediction (R&D)     | 41.6M  | 57.2M  | 72.8M  | 88.4M  | 104.0M | 119.6M |
| Hurricane      | Operations<br>(NCEP) | 1.54M  | 1.85M  | 2.21M  | 2.66M  | 3.20M  | 3.84M  |
| Storm<br>surge | NHC/SLOSH/<br>SWAN   | 4.8M   | 6.6M   | 8.4M   | 10.2M  | 12.0M  | 13.8M  |
|                | MDL                  | 0.36M  | 1.58M  | 2.02M  | 3.32M  | 6.85M  | 7.09M  |
|                | NOS                  |        | 0.45M  | 0.45M  | 0.55M  | 0.55M  | 0.71M  |
| Disk           | (TB)                 |        |        |        |        |        |        |
| Hurricane      | Prediction           | 6,040  | 8,280  | 10,520 | 12,760 | 15,000 | 17,500 |
| Hurricane      | Operations<br>(NCEP) | 800    | 960    | 1152   | 1383   | 1660   | 1990   |
| Storm<br>surge | NHC/SLOSH/<br>SWAN   | 80     | 110    | 140    | 170    | 200    | 230    |
|                | MDL                  | 32     | 44     | 56     | 68     | 80     | 92     |
|                | NOS                  | 6      | 88     | 91     | 101    | 104    | 140    |








### **Key Strategies**



#### 5. Research to Operations (R20) Enhancements

- Accelerate transition to operations by following NOAA's best practices for promoting technical readiness levels (TRLs)
- Develop a process to prioritize research targeted for operational improvements
- More integrated use & support of Testbeds (JHT, DTC, JCSDA)





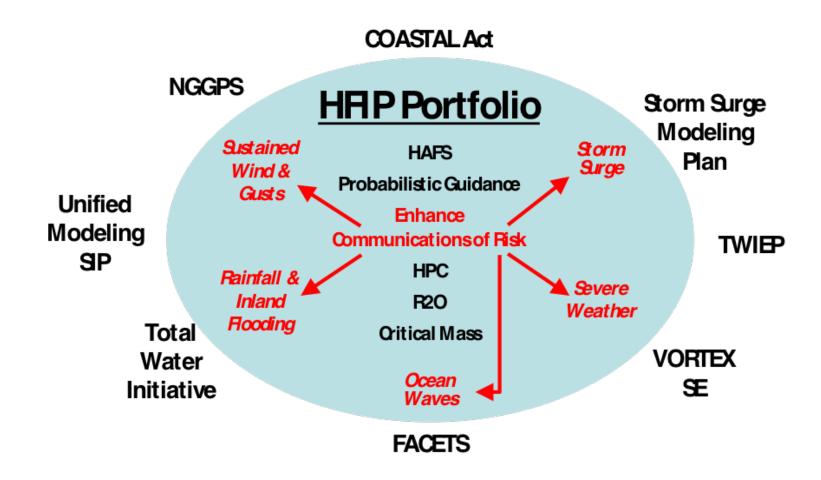


### **Key Strategies**



### 6. Broaden expertise and expand interaction with external community

- Re-invigorate the grants program
- Maintain a visiting scientist program at research and operational centers
- Advisory committees,
   community workshops
- Collaborate/coordinate with social and behavioral sciences
- Outreach to America's Weather Industry (AWI)

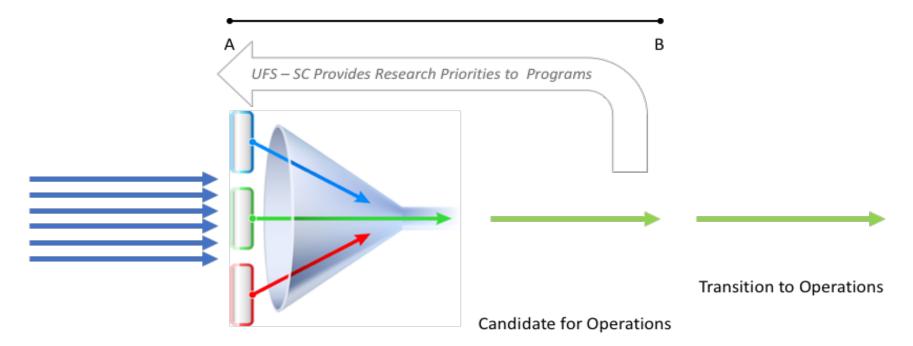







### Dependencies










## Organizing R20: UFS SC Recommendations





Integration of Components into UFS Candidate Systems

Community Components for Inclusion in UFS Repositories







## Questions/Discussion

