

NOAA's Hurricane Forecast Improvement Project: Framework for Addressing the Weather Research Forecasting Innovation Act of 2017

Frank Marks (NOAA/AOML/HRD)

November 7, 2018

NOAA Hurricane Forecast Improvement Project

Meeting the Nation's Needs

HFIP Vision/Goals (2009-2018)

Vision

 Organize hurricane community to dramatically improve numerical forecast guidance to NHC in 5-10 years

Goals

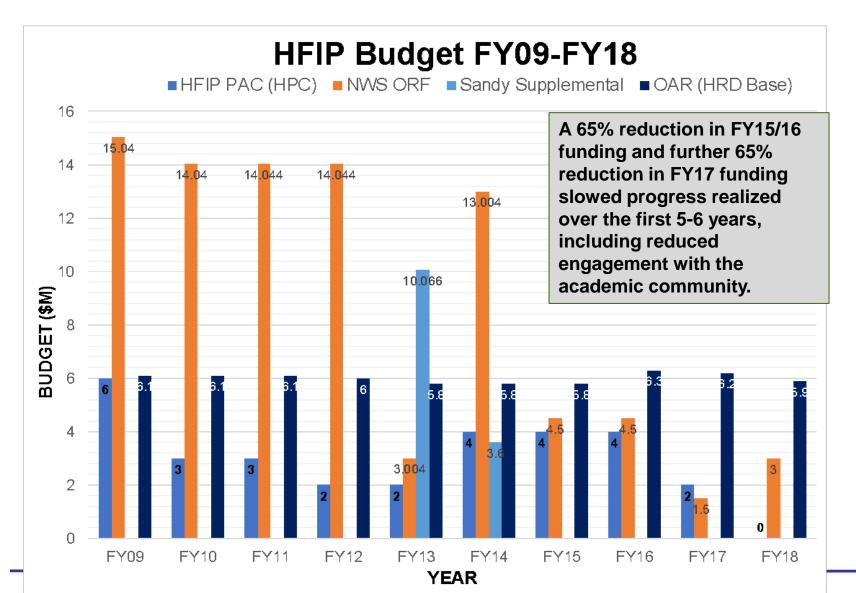
- Improve forecast accuracy for track & intensity by 20% in 5 years, 50% in 10 years
- Extend forecast guidance to 7 days with skill comparable to current 5 day forecasts
- Increase probability of predicting Rapid Intensity Change (RI/RW)
- Improve storm surge prediction

NOAA Hurricane Forecast Improvement Project

HFIP Success

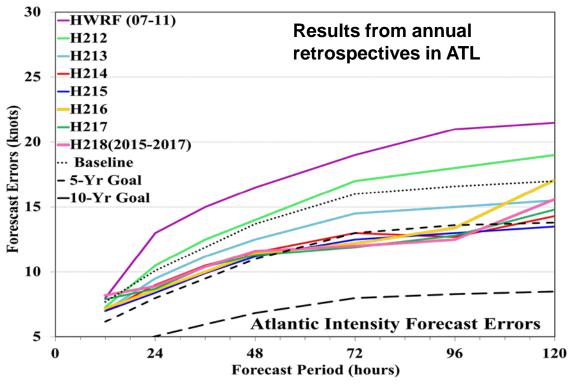
HFIP achieved ~20% decrease in average hurricane track and intensity forecast errors, reaching the 5-yr goals, and for track very close to the 10-yr goal.

NOAA Hurricane Forecast Improvement Project


Meeting the Nation's Needs

Appropriation History (2009-2018)

Δ



HWRF: Hurricane Weather Research and Forecast System

- HWRF continuously improved in the past seven years through support from HFIP
- Successful community modeling approach for accelerated transition of research to operations
- New in 2018 for operational HWRF:
 - Increase horizontal resolution to 13.5/4.5/1.5 kms
 - Updates to RRTMG radiation scheme
 - Unified HWRF/HMON coupler

- New datasets for assimilation in the hurricane inner core and environment
 - o SFMR, dropsonde drifts
 - o G-IV TDR
 - $\circ~$ GOES-16 AMV's and NOAA-20 data sets

Real-time Reservation Projects

Real-time Reservation Project	User Name	Organization
HWRF driven by FV3GFS	Avichal Mehra (base project PI), Biju-	EMC
Parallel Experiment	Thomas (RT PI), Bin Liu (Tech.Lead)	
	Avichal Mehra (Base PI), Zhan Zhang	EMC
HWRF Ensemble: rthwrf-EPS	(RT PI), Weiguo Wang (Tech.Lead)	
	Shian-Jiann Lin (Base PI), Andrew	GFDL
3-km nested hfvGFS	Hazelton (RT PI), Matt Morin	
(Atlantic)	(Tech.Lead)	
	Ghassan Alaka, Jr. (Base and RT PI)	AOML/HRD
Real-time Basin-Scale HWRF	Jonathan Poterjoy, Xuejin Zhang, and	
(w/ cycled data assimilation)	Gopalakrishnan Sundararaman	
HMON Ensemble real-time	Avichal Mehra (Base-PI), Weiguo	EMC
experiment: hwrfv3	Wang (RT-PI), Lin Zhu (Tech. Lead)	
FV3GFS, C768 with data	Georg Grell (Base and RT PI), Judy	ESRL, GSD
assimilation (DA) cycle	Henderson (Tech.Lead)	
Real-Time Analog Ensemble:	William E. Lewis (Base and RT PI),	UWI.edu
hwrf-anen	Chris Rozoff (New role or Tech.Lead)	

2018 HFIP FFO University Awarded Grants

Project Title (Linked)	Submittin g Organizati on	Principal Investigator	Priorit y Area(s) - see below	Total \$	
Advanced DA Techniques for					
Satellite-Derived Atmos.					
Motion Vectors from GOES	WI-				
<u>16/17 in the HWRF</u>	CIMMS	Lim, Agnes	а	\$221,400	
Using Dynamically-Based					
Probabilistic Forecast Systems					
to Improve the NHC Wind		Schumacher,			a: Data
Speed Speed Products	CSU-CIRA	Andrea	d,c	\$200,004	Assimilation b: Prediction:
RI changes: improving sub-grid					Intensity/Track
scale model parameterization					c: Ensemble Development
and microphysical-dynamical					d: Post-Processing
- interaction	FIU	Zhu, Ping	b	\$296,701	

Priorities for the Next Phase of HFIP

- Evolution of HAFS FV3 based hurricane application
- Reduce largest track and intensity errors
 - Target RI cases; improve initialization & physics impacting rapid intensity change
- Focus on improvements of model physics (scale aware)
- Continued focus on high-resolution ensembles and data assimilation (satellite data)
- Improve ensemble prediction & products
- Extend/improve guidance out to 7 days
- Provide improved products and tools to the forecasters

Weather Act Sec.104: HFIP

Develop an updated plan, detailing the specific research, development, and technology transfer activities necessary to sustain HFIP and achieve the 3 focus areas in <u>Section 104 of the</u> <u>Weather Research and Forecasting Innovation Act</u>:

- 1. improving the prediction of rapid intensification and track of hurricanes
- 2. improving the forecast and communication of storm surges from hurricanes
- 3. incorporating risk communication research to create more effective watch and warning products

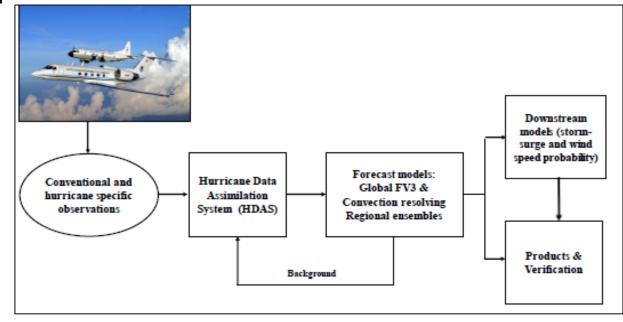
The plan will detail long-term HFIP goals, priorities, and approaches.

ARE DE OF AN

HFIP Goals aligned with the Weather Act

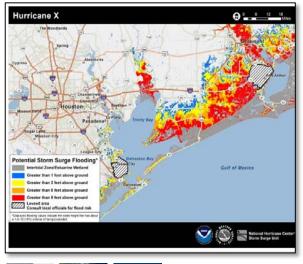
- 1. Reduce numerical forecast guidance errors, including during rapid intensification, by 50 percent from 2017;
- Produce 7-day forecast guidance that is similar to the 2017 5-day forecast guidance;
- Improve guidance on pre-formation disturbances, including genesis timing, track and intensity forecasts, by 20 percent from 2017; and
- Improve hazard guidance and risk communication, based on social and behavioral science, to modernize the TC product suite (i.e., products, information, and services) for actionable lead times for storm surge and all other threats.

NOAA Hurricane Forecast Improvement Project

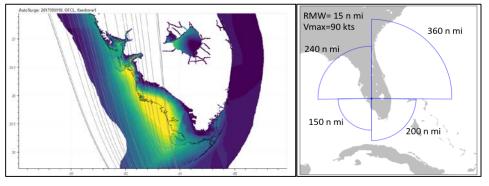


1. Advance operational hurricane analysis and forecast system (HAFS)

- R&D for HAFS to advance deterministic and ensemble prediction capabilities
- o R&D for fusion of modeling, data assimilation and observations to produce an analysis of record
- o R&D for ensemble post-processing to extract guidance and uncertainty information


Key Strategies: Guidance & Products

2. Improve probabilistic guidance


- Calibrate guidance with HAFS
- Incorporate dynamically-based uncertainty into hazard models and products
- R&D for hazard-specific products from HAFS

Potential Storm Surge Flooding Map

Planned improvements to P-Surge to Improve the Potential Storm Surge Flooding Map

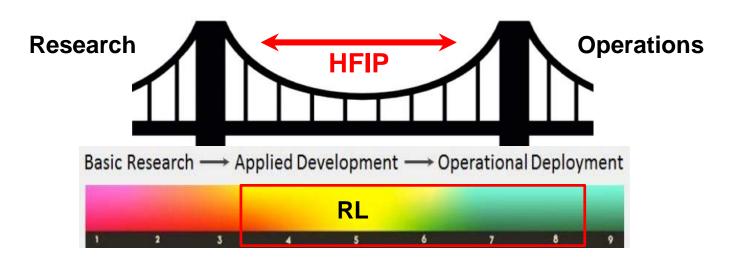
- 3. Enhance communication of risk and uncertainty
 - Evaluate TC products for effective communication of risk
 - Determine operationally viable ideas from NWS partners and stakeholders
 - Iterate between social and behavioral sciences and operational community to develop and/or enhance new and/or current TC products

Key Strategies: HPC

4. Support Dedicated HPC Allocation

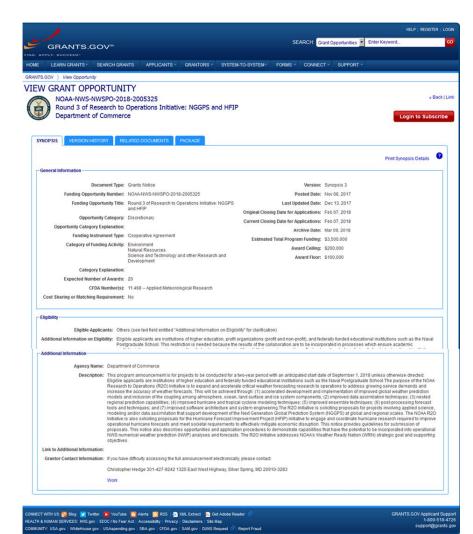
- NOAA R&D and operational computing to support HAFS development
- Sustain modeling and software engineering expertise
- Match with technological innovations

Compute	(core h/ month)	FY2018	FY2019	FY2020	FY2021	FY2022	FY2023
Hurricane	Prediction (R&D)	41.6M	57.2M	72.8M	88.4M	104.0M	119.6M
Hurricane	Operations (NCEP)	1.54M	1.85M	2.21M	2.66M	3.20M	3.84M
Storm surge	NHC/SLOSH/ SWAN	4.8M	6.6M	8.4M	10.2M	12.0M	13.8M
	MDL	0.36M	1.58M	2.02M	3.32M	6.85M	7.09M
	NOS		0.45M	0.45M	0.55M	0.55M	0.71M
Disk	(ТВ)						
Hurricane	Prediction	6,040	8,280	10,520	12,760	15,000	17,500
Hurricane	Operations (NCEP)	800	960	1152	1383	1660	1990
Storm surge	NHC/SLOSH/ SWAN	80	110	140	170	200	230
	MDL	32	44	56	68	80	92
	NOS	6	88	91	101	104	140



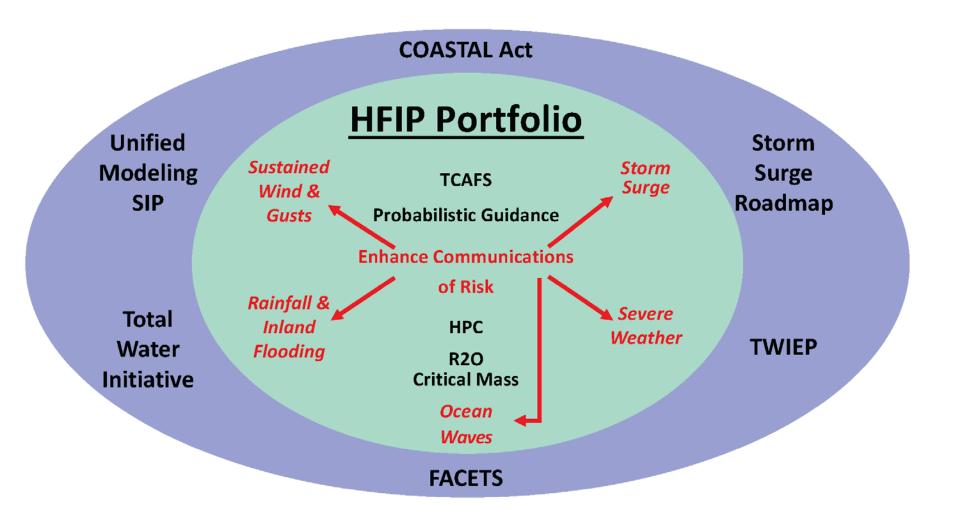
5. Research to Operations (R20) Enhancements

- Accelerate R2O using NOAA Testbeds by following NOAA's best practices for promoting readiness levels
- Develop a process to prioritize research targeted for operational improvements

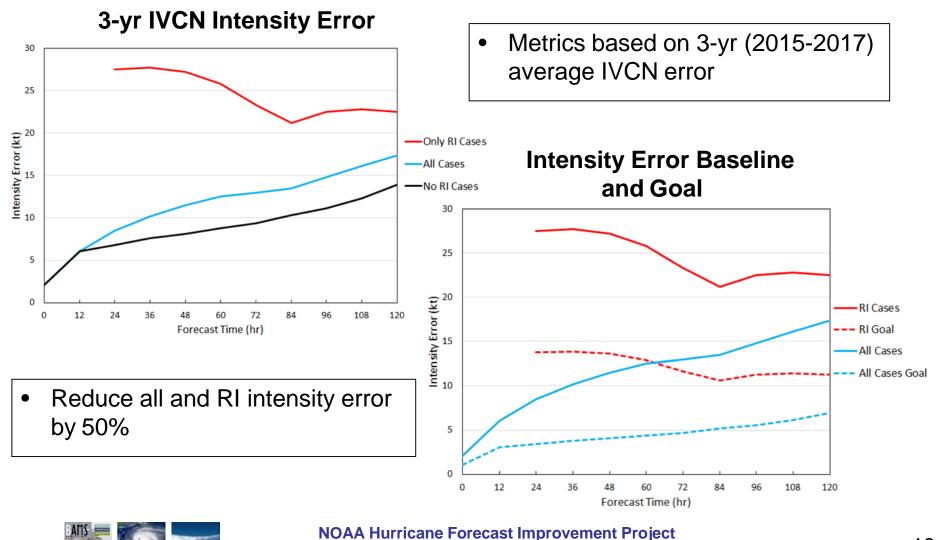


Key Strategies: Outreach to Community

- 6. Broaden expertise & expand interaction with external community
 - o Re-invigorate grants program
 - Maintain a visiting scientist program at research and operational centers
 - Advisory committees, community workshops
 - Collaborate/coordinate with social and behavioral sciences
 - Outreach to America's
 Weather Industry (AWI)



Connections


Questions?

Rapid Intensification Goal

Meeting the Nation's Needs