

Unified FV3-based Weather and Climate Modeling at GFDL

Lucas Harris for S-J Lin and the GFDL FV3 Team
HFIP Annual Meeting
5 November 2018

FV3: The GFDL Finite-Volume Cubed-Sphere Dynamical Core

Lin & Rood 1996Efficient 2D high-order
FV transport

Lin & Rood 1997 FV horizontal solver focusing on nonlinear vorticity dynamics

Goal: Physical consistency, fully-FV numerics, component coupling, and computational efficiency

Lin 1997 Efficient, mimetic FV PGF

Next-generation FV3

Rigorous Thermodynamics Flexible dynamics Adaptable physics interface Variable-resolution techniques Regional & periodic domains

Lin 1998–2004 FV core with "floating" Lagrangian vertical coordinate: highly-accurate and stable vertical transport

Variable resolution with twoway nesting and Schmidt grid stretching

Lin 2006, Chen & Lin et al 2013

Consistent Lagrangian nonhydrostatic dynamics

Putman & Lin 2007 Scalable cubed-sphere grid, doubly-periodic domain

The FV3 community

FMS Framework

AM/CM/ESM 2/3/4 HIRAM, FLOR, HIFLOR, SPEAR fvGFS

GMAO Framework

GEOS, DAS, MMF, MERRA(2) GISS Model E Ames Mars model

GFDL

CESM Framework

CAM-FV CAM-FV3

NCAR

TaiESM; CWB prediction model

Many Models Many Applications One flexible dynamical core

NEMS Framework

FV3-powered GFS, GEFS, CFS, WAM HAFS, UFS, RRFS FV3-based regional model for HREF, Warn-on-Forecast

GEOS Chem GEOS-Chem High-Performance

LASG FAMIL

The GFDL Unified Modeling Suite

Models for prediction, projection, and research at all scales

- FV3: GFDL Finite-Volume Cubed-Sphere Dynamical Core
 - Not a model, a dynamical core...for now
- AM4: GFDL's CMIP6 Atmosphere Model
- CM4/ESM4: GFDL's CMIP6 Coupled-Climate Models
- HiRAM: High-Resolution Atmosphere Model for S2S prediction
- SPEAR: Coupled model for S2D prediction
- fvGFS: Weather and S2S prediction model
 - Simple and focused; ideal for researchers and academics
 - Passes graduate student test!

GFDL Physics Suite and LM4 Land Model

Modified GFS Physics Suite and NOAH Land Model

MJO: Variability and Impacts

100-km AM4: Zhao et al 2018a,b (JAMES)

0.1 0.2 0.3 0.4 0.5

Gao et al 2018 (JGR)
See highlight in *Eos*

2018 fvGFS Upgrades

GFDL continues to develop *model* including dynamics and physics.

- 2018 FV3 Core
 - New positive-definite scalar advection
 - Revised nesting code to be more efficient and simpler
- 2018 GFDL MP
 - Inline microphysics (enabled in 13-km global and in continental 3-km nest)
- GFS PBL replaced by YSU (H. Shin, UCAR/GFDL)
- Mixed-layer ocean (B. Xiang, UCAR/GFDL)
- Operational Scale-Aware SAS
- Various GFS Physics Driver enhancements and re-tunings

Advection schemes in FV3

- A true finite-volume scheme computes fluxes by integrating the amount of subgrid mass flowing through a cell interface during a timestep.
- The subgrid distribution (black) is an approximation that gives a certain order of accuracy, given a set of cell mean values (blue), and that *limits* the reconstruction so that the creation of new extrema (noise) is prevented.
- FV3 always uses Piecewise-Parabolic advection (PPM), which is formally fourthorder before limiting

Advection Schemes in FV3: Dynamical Processes

- True FV schemes do as much as possible as a flux (just like real fluids). In FV3 all scalars (air mass, vorticity, vertical velocity, potential temperature) are advected by the same scheme, for best results.
- hord_{tm,mt,vt,dp} = 8: Strictly monotonic advection
 - No overshoots, but most diffusive
 - "hord" is just a selector for the reconstruction, and does not control "order of accuracy"
 - Monotonicity is "smart" diffusion, and can replace "physical" diffusion in some contexts (LES: Pressel and Schneider et al. 2017)

Advection Schemes in FV3: Dynamical Processes

- hord_xx = 6: Non-monotonic ("linear", "unlimited") with a strong filter: flatten reconstruction if curvature is too large
 - Best ACC but weakest TCs
- hord_xx = 5: Weak $2\Delta x$ filter: flatten reconstruction only if a $2\Delta x$ mode is present
 - Slightly degraded ACC, stronger TCs
 - Warning: hord_xx = 5 is only very weakly diffusive. Recommend increasing explicit damping to compensate, for best results.

Advection schemes in FV3: Tracer Advection

- Tracer advection must always be either monotonic or positive definite; negatives are bad for microphysics and chemistry
- hord_tr = 8: Strictly monotonic advection, same as hord_xx = 8
- hord_tr = -5: same as hord_xx = 5 but with a positive-definite limiter
 - Not fully implemented in last FV3 delivery to EMC
- Important: there is **no** explicit diffusion on tracers in FV3. hord_tr = -5 is effectively inviscid.

Hurricane Maria

65-hour forecast Init 12Z 17 Sep 18

925-mb winds (kt)

4-km Radar Reflectivity (dBZ)

Global-to-regional Refinement

(two-way nesting, or stretching)

- Consistent, rapid interaction
- Improved BCs
- Large-scale interaction (great for TCs)
- Enables medium-range/S2S (decadal-centennial?)
 convective-scale prediction

An improvement upon existing models— The key to next-generation CAMs?

Stand-alone Regional Model

- Low computational overhead Ideal for resource-limited users
- Simple and easy for short-term
- Good for extremely high resolutions
 LES, urban-scale, Warn-on-Forecast
 - 3-km is not the end!!

Under Construction

Stand-alone regional
(EMC-GFDL)

FV3 Adjoint (NASA Goddard)

UWisc/SSEC Satellite
Simulator and Verification

Deep atmosphere and variable composition for WAM/ Geospace (EMC-GFDL-SWPC) Valery Yudin, CU/SWPC

Convective-scale prediction and DA (GFDL, OU/CAPS, EMC, AOML, NSSL, PSU, ESRL, etc.)

GFDL "FV3-2020": Integrating Physics with Dynamics

DYAMOND

Weather ♥□Climate

- International global cloudresolving model intercomparison
- 40-day fvGFS runs
 - 3-km c3072
 - Also 6.5-km c1536
 - GFDL MP, no convective parameterization, new SGO
- Evaluating climate (energy balance, circulation) as well as variability and weather events

Courtesy S-J Lin, Xi Chen, and Linjiong Zhou www.gfdl.noaa.gov/visualizations-mesoscale-dynamics/

Concerns moving forward: Physics

- What is the Physics Development strategy for NGGPS?
 - Framework development is not physics development
 - Parameterization mix-and-match is not physics development

Do we really believe parameter choices are already perfect for all purposes?

- Successful models succeed by holistic model development, in tandem with other components, not assembling models like Legos
- Successful physics suites succeed by holistic physics development
- Physics unification and/or differentiation: not just regional—global and weather—climate but also tropical—mid-latitude and marine land—ice

Concerns moving forward: Longer-range Prediction

- Exploring 5–10 day hurricane prediction skill
 - Cannot move forward by moving back to 18 hour forecasts
- Will just any ocean coupling be good enough for S2S? Hurricane prediction? Hydrological and coastal modeling? (Maybe.)
- Seasonal/annual scales (0–2 years as per Weather Act): ????
 - Dominated by ENSO, stratospheric modes, land surface, cryosphere...
 Need to engage climate modeling community.

Concerns Moving Forward: Whither the regional models?

- Medium-range and S2S convective-scale prediction is the next frontier. How will we get there?
- What will the regional model be useful for? Even higher resolutions!
 - Urban scale, LES, Warn-on-Forecast, and other sub-km applications
- Need a better name.
 - "SAR" → "SARS"
 - FV3-CAM → NCAR CAM-FV3
 - ReginAM: Regional Atmosphere Model
 - "Reginam" means "kingdom", "realm", or "domain"

Finite-Volume Advection

A Very Short Introduction

