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FV3: The GFDL Finite-Volume

Cubed-Sphere Dynamical Core

Lin & Rood 1996
Efficient 2D high-order
FV transport

Lin & Rood 1997 FV
horizontal solver
focusing on nonlinear
vorticity dynamics

Next-generation FV3
Rigorous Thermodynamics

Flexible dynamics
Adaptable physics interface

Harris & Lin 2013, 2016
Variable resolution with two-
way nesting and Schmidt grid
stretching

H

STHE

Lin 2006, Chen & Lin et al 2013
Consistent Lagrangian
nonhydrostatic dynamics

Goal: Physical consistency, fully-FV
numerics, component coupling, and
computational efficiency

Lin 1997 Efficient,
mimetic FV PGF

Lin 1998-2004 FV core with “floating”
Lagrangian vertical coordinate:
highly-accurate and stable vertical transport

Putman & Lin 2007
Scalable cubed-sphere
grid, doubly-periodic
domain




The FV3 community

Many Models

Many Applications
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One flexible dynamical core
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The GFDL Unified Modeling Suite

Models for prediction, projection, and research at all scales
 FV3: GFDL Finite-Volume Cubed-Sphere Dynamical Core

 Not a model, a dynamical core...for now

e AM4: GFDL’s CMIP6 Atmosphere Model
e CM4/ESM4: GFDL’'s CMIP6 Coupled-Climate Models LM4 Land Model

e HiIRAM: High-Resolution Atmosphere Model for S2S prediction
e SPEAR: Coupled model for S2D prediction

e fvGFS: Weather and S2S prediction model Modified GFS Physics Suite
e Simple and focused; ideal for researchers and academics and NOAH Land Model

e Passes graduate student test!
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MJO: Variability and Impacts
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Tropical Storms

Observation Hurricanes
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2018 fvGFS Upgrades

GFDL continues to develop model including dynamics and physics.

e 2018 FV3 Core

 New positive-definite scalar advection
e Revised nesting code to be more efficient and simpler

e 2018 GFDL MP

* Inline microphysics (enabled in 13-km global and in continental 3-km nest)

e GFS PBL replaced by YSU (H. Shin, UCAR/GFDL)

e Mixed-layer ocean (B. Xiang, UCAR/GFDL)

e Operational Scale-Aware SAS

e Various GFS Physics Driver enhancements and re-tunings



Advection schemes in FV3

e A true finite-volume scheme computes
fluxes by integrating the amount of subgrid
mass flowing through a cell interface during
a timestep.

e The subgrid distribution (black) is an
approximation that gives a certain order of
accuracy, given a set of cell mean values
(blue), and that limits the reconstruction so
that the creation of new extrema (noise) is
prevented.

e FV3 always uses Piecewise-Parabolic
advection (PPM), which is formally fourth-
order before limiting

e




Advection Schemes in FV3:
Dynamical Processes

e True FV schemes do as much as possible as a flux (just like real fluids).
In FV3 all scalars (air mass, vorticity, vertical velocity, potentia
temperature) are advected by the same scheme, for best results.

e hord {tm,mt,vt,dp} = 8: Strictly monotonic advection

* No overshoots, but most diffusive
e “hord” is just a selector for the reconstruction, and does not control “order of
accuracy”

 Monotonicity is “smart” diffusion, and can replace “physical” diffusion in
some contexts (LES: Pressel and Schneider et al. 2017)




Advection Schemes in FV3:
Dynamical Processes

/A

* hord_xx = 6: Non-monotonic (“linear”, “unlimited”) with a strong
filter: flatten reconstruction if curvature is too large

e Best ACC but weakest TCs

 hord xx =5: Weak 2Ax filter: flatten reconstruction only if a 2Ax
mode is present
 Slightly degraded ACC, stronger TCs

e Warning: hord _xx =5 is only very weakly diffusive. Recommend increasing
explicit damping to compensate, for best results.



Advection schemes in FV3:
Tracer Advection

e Tracer advection must always be either monotonic or positive
definite; negatives are bad for microphysics and chemistry

e hord_tr = 8: Strictly monotonic advection, same as hord xx =8

 hord tr =-5:same as hord xx =5 but with a positive-definite limiter
e Not fully implemented in last FV3 delivery to EMC

* Important: there is no explicit diffusion on tracers in FV3.
hord_tr = -5 is effectively inviscid.
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2017 Config
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60-90 second

Two-way Interaction

Continual interaction on stretched grid

Global-to-regional Refinement
(two-way nesting, or stretching)

e Consistent, rapid interaction

e |mproved BCs

e Large-scale interaction (great for TCs)

e Enables medium-range/S2S (decadal-centennial?)

convective-scale prediction
An improvement upon existing models—
The key to next-generation CAMS?/

GFDL Experimental fwGFS: Ice and Liguid Water Path [kg/m**2]
Init: 00z May 22 2017 Fost Hour: 040 valid at 16z Tue, May 23

L]

Three-hour
BC Update Frequency

sphum =58 Forecast time 84 hr
specific humidity Valid time: 2018-04-21T12:00:00

Tom Black, EMC

Stand-alone Regional Model
* Low computational overhead
Ideal for resource-limited users
e Simple and easy for short-term
e Good for extremely high resolutions
LES, urban-scale, Warn-on-Forecast
e 3-kmis not the end!!

/
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Deep atmosphere
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Valery Yudin,
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Convective-scale prediction and DA
(GFDL, OU/CAPS, EMC, AOML, NSSL, PSU, ESRL, etc.)

GFDL “FV3-2020”: Integrating Physics with Dynamics



DYAMOND

Weather ®OClimate

 International global cloud-
resolving model inter-
comparison

e 40-day fvGFS runs

e 3-km ¢c3072
* Also 6.5-km c1536

e GFDL MP, no convective
parameterization, new SGO

e Evaluating climate (energy
balance, circulation) as well as
variability and weather events

Courtesy S-J Lin, Xi Chen, and Linjiong Zhou

www.gfdl.noaa.gov/visualizations-mesoscale-dynamics/



Concerns moving forward: Physics

 What is the Physics Development strategy for NGGPS?
e Framework development is not physics development
e Parameterization mix-and-match is not physics development

Do we really believe parameter choices are already perfect for all purposes?

e Successful models succeed by holistic model development, in tandem with
other components, not assembling models like Legos

e Successful physics suites succeed by holistic physics development

* Physics unification and/or differentiation: not just regional—global
and weather—climate but also tropical-mid-latitude and marine—
land—ice



Concerns moving forward:
Longer-range Prediction

e Exploring 5—10 day hurricane prediction skill
e Cannot move forward by moving back to 18 hour forecasts

* Will just any ocean coupling be good enough for $2S?
Hurricane prediction? Hydrological and coastal modeling? vaybe.)

e Seasonal/annual scales (0—2 years as per Weather Act): ????

e Dominated by ENSO, stratospheric modes, land surface, cryosphere...
Need to engage climate modeling community.



Concerns Moving Forward:
Whither the regional models?

* Medium-range and S2S convective-scale prediction is the next
frontier. How will we get there?

 What will the regional model be useful for? Even higher resolutions!
e Urban scale, LES, Warn-on-Forecast, and other sub-km applications

* Need a better name.
PS HSARH 9 HSARS”
 FV3-CAM - NCAR CAM-FV3
 ReginAM: Regional Atmosphere Model

e “Reginam” means “kingdom”, “realm”, or “domain”



Finite-Volume Advection
A Very Short Introduction
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