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Executive Summary 

This technical report describes the activities and results of the Hurricane Forecast Improvement Program 
(HFIP) that occurred in the 2021 and 2022 hurricane seasons. The major focus of this report is the 
development of the Hurricane Analysis and Forecast System (HAFS) as a hurricane application of the 
Unified Forecast System (UFS) and its first operational implementation. As 2022 marks five years since 
the Weather Act of 2017 established new 5-year goals for HFIP, we will pay particular attention to progress 
HFIP has made in meeting these goals. We also report some significant improvements in forecasting rapid 
intensification (RI) of tropical cyclones (TCs), one of the primary goals of HFIP that was set in the 
beginning of the program. 

The 2021 North Atlantic hurricane season was above average. There were 21 named storms, of which 7 
developed into hurricanes, with 4 of those becoming major hurricanes. There were 8 landfalls in the U.S. 
from 6 tropical storms and 2 hurricanes. In the eastern North Pacific, there were 19 named storms, of which 
8 developed into hurricanes with 2 major hurricanes. There were 6 observed RI events, defined as an 
intensification of 30 kt or more in 24 hours, from 5 tropical cyclones (Elsa, Grace, Ida, Larry and Sam) in 
the Atlantic basin and 3 reported events of RI in the eastern North Pacific (Felicia, Linda and Olaf). 

The 2022 North Atlantic hurricane season was an average, but destructive, season, with 14 named storms, 8 
hurricanes, and 2 major hurricanes. Hurricane Fiona was a category 4 hurricane that caused significant 
damage to Puerto Rico, the Dominican Republic, and Nova Scotia. Hurricane Ian was a category 5 
hurricane at its peak, that slammed into southwest Florida at category 4 intensity, causing widespread 
damage. The 2022 eastern North Pacific hurricane season was active, with 19 named storms, 10 hurricanes, 
and 4 major hurricanes. Seven eastern North Pacific tropical cyclones made landfall, including two which 
crossed over from the Atlantic basin. There were 4 RI events from 3 tropical cyclones in the North Atlantic 
(Danielle, Martin, and Ian), and 8 RI events in the eastern North Pacific (Agatha, Blas, Darby, Estelle, 
Howard, Kay, Orlene, Roslyn). 

The major highlights of 2021 were: 

1. Significant progress was made toward meeting the HFIP RI performance targets. Comparison of the 
HFIP RI performance metric for 2019-21 against the 2015-17 baselines is encouraging. At 24 h the 
baseline error was reduced by 34%, at 48 h the baseline error was reduced by 27% , and at 72 h the 
baseline error was reduced by 27%. 

2. A major accomplishment in 2021 was the accelerated development of NOAA’s next-generation 
HAFS through the Bipartisan Budget Act of 2018 - also referred to as the Hurricane Supplemental 
Appropriations funding. In particular, significant progress was made with the development of the 
moving nest in the global and regional versions of HAFS, and the regional development with one 
moving nest, capable of automatically tracking one hurricane at a time. 

3. For the intensity guidance, the Hurricane Weather Research and Forecasting (HWRF) Model did 
better at early lead times until 48 h but lagged behind Hurricanes in a Multi-scale Ocean-coupled 
Non- hydrostatic (HMON) model in the North Atlantic basin. In the eastern North Pacific basin, 
HWRF was comparable to HMON beyond 72 h but lagged behind for early lead times. 
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4. HWRF was the second-best track model behind the GFS and had reasonable track skill in the 
Atlantic basin. HMON lagged behind HWRF in track skill. In the east Pacific basin, HWRF lagged 
behind GFS at most lead times. HMON intensity skill was better than HWRF at most lead times. 

5. Four configurations of the HAFS model were run as part of the 2021 HFIP Real-time Experiment 
(HREx). They were (i) the ocean-coupled, high-resolution regional Limited Area Model; (ii) global 
model with a high-resolution nest; (iii) regional HAFS with data assimilation (DA); and (iv) HAFS 
ensemble with 21 members. In general, all the fours version showed improved performance over 
HWRF at various lead times The regional version showed some significant improvements over 
HWRF both in terms of track and intensity at several lead times, hence offering promise for further 
developments. The moving nest was implemented in this regional version and was tested during the 
2022 hurricane season in advance of the operational implementation of HAFS in 2023. 

6. Disaster Supplemental Appropriations provided a unique and important opportunity to integrate 
social, behavioral and economic sciences (SBES) into NOAA’s tropical cyclone products and 
services, as well as incorporate risk communication research into the design of its products. To 
accomplish these goals, the Office of Oceanic and Atmospheric Research (OAR) collaborated with 
the National Weather Service (NWS) to identify relevant operational challenges, develop project 
descriptions, and fund four SBES projects. 

Major highlights of 2022 were: 

1. Amongst real-time intensity forecast guidance, HWRF and HMON performed particularly well in 
2022 in the North Atlantic. In fact, HWRF outperformed most blended intensity guidance from 
60-120 h, and it outperformed all model blends at 72 h, an extremely impressive feat for a 
deterministic mesoscale model. HMON also performed very well in 2022, and was the best 
individual model for short-range intensity forecasts, namely from 24-48 h. 

2. Overall, a steady reduction in RI forecast errors continues to be quite promising, and in-line with 
preestablished HFIP goals. In the 2021-2022 combined sample, RI forecast errors are well below 
the baseline from 2007 of 27-37 kt error (varying by forecast lead time), and match up quite well 
with the target, or the 5-year goals from the Weather Act of 2017, with errors ranging from 15-23 
kt. 

3. Building upon results from 2021, the two most skillful configurations of HAFS in terms of track 
and intensity skill scores relative to HWRF, HAFS-A and HAFS-S (subsequently renamed 
HAFS-B), continued development, while previous less skillful configurations have been dropped 
in order to refocus all resources to developing the most promising model configurations. Running 
a three-year retrospective sample for both the North Atlantic and eastern North Pacific, HAFS-A 
and HAFS-S show 5-15% improvement with respect to HWRF for track, and comparable skill 
with the already quite skillful HWRF for intensity in the North Atlantic, and improvements of 
10-20% at days 4-5 in the eastern North Pacific. 

4. In 2022, an experimental 12-member HAFS ensemble made its debut as part of HREx. Relative 
to the unperturbed control member, the HAFS ensemble mean forecast produced neutral skill for 
track, but significant improvement for intensity. The ensemble mean intensity forecast is on the 
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order of 20% more skillful than the ensemble control from 48-96 h, and is 5-15% more skillful 
than both HAFS-v0.3A and HAFS-v0.3S for intensity from 42-72 h. 

5. Under Sect. 104 of the Weather Research and Forecasting Innovation Act, HFIP will continue to 
address the new goals of further reducing track and intensity forecast errors by 20% within 5 
years and 50% within 10 years and to extend forecasts out to 7 days, with a particular focus on RI 
guidance. In addition, the updated plan extends HFIP’s purview to improving guidance on 
predicting storm structure and all hurricane hazards (e.g., storm surge, rain, associated severe 
weather like tornadic activity, and wind gusts, as well as sustained winds) at actionable lead times 
for emergency managers (e.g., 72 hours). While significant progress was made in 2022, especially 
for track and intensity predictions, further improvements are necessary for the HAFS system to 
fully address the HFIP goals. 

https://HAFS-v0.3S
https://HAFS-v0.3A
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1. Chapter I: HFIP Overview and Background 

1.1. Introduction 

This report describes the Hurricane Forecast Improvement Program (HFIP), its goals, proposed methods 
for achieving those goals, and the most recent results from the program, with an emphasis on advances in 
the skill of operational hurricane forecast guidance. Chapter I of this report describes the background, 
goals, and baselines for measuring success within the HFIP program. Chapter II focuses upon capturing 
state-of-the-art HFIP modeling accomplishments during the 2021 hurricane season, and continued 
development of the Hurricane Analysis and Forecasting System (HAFS) within the Unified Forecast 
System (UFS). Chapter III highlights high-resolution hurricane modeling successes from the 2022 
hurricane season, continued development of the HAFS system, retrospective testing and evaluation of 
HAFS and preparation for transition in 2023, and future plans. For more background information, readers 
are referred to earlier reports available on the HFIP website. 

1.2. The Hurricane Forecast Improvement Program (HFIP) 

The Hurricane Forecast Improvement Program (HFIP) was established within NOAA in June 2007, in 
response to particularly damaging landfalling hurricanes (e.g., Charley, 2004; Wilma, Katrina, Rita, 2005) 
in the first half of that decade. HFIP’s original 5-year (for 2014) and 10-year goals (for 2019) are:1 

● Reduce average track errors by 20% in 5 years, and by 50% in 10 years for days 1-5. 
● Reduce average intensity errors by 20% in 5 years, and 50% in 10 years for days 1-5. 
● Increase the probability of detection (POD)2 for RI to 90% at Day 1, decreasing linearly to 60% at 

day 5, and decreasing the false alarm ratio (FAR) for rapid intensity change to 10% for day 1, 
increasing linearly to 30% at day 5. [The focus on RI change is the highest-priority forecast 
challenge identified by the National Hurricane Center (NHC)]. 

● Extend the lead-time for hurricane forecasts out to Day 7 (with accuracy equivalent to that of the 
Day 5 forecasts when those were introduced in 2003). 

For more than a decade, HFIP has been providing the unified organizational infrastructure and funding for 
NOAA and other agencies to coordinate the hurricane research needed to achieve the above goals, 
improve storm surge forecasts, and accelerate the transition of model codes, techniques, and products 
from research to operations. HFIP focuses on multi-organizational activities to research, develop, 
demonstrate, and implement enhanced operational modeling capabilities, dramatically improving the 
numerical forecast guidance made available to the NHC, as well as enhancing the interpretation of that 
guidance. Through HFIP, NOAA continues to improve the accuracy of hurricane forecasts, with applied 
research using advanced computer models. 

1 The current operational model HWRF and HMON is evaluated based on the 2014 HFIP strategic plan, while the next-gen 
hurricane model is being developed and evaluated based on the 2019 HFIP strategic plan. 
2 POD is equal to the total number of correct RI forecasts divided by the total number of forecasts that should have indicated RI: 
number of correctly forecasted ÷ (correctly forecasted RI + did not forecast RI, but should have). False Alarm Ratio (FAR) is 
equal to the total number of incorrect forecasts of RI divided by the total number of RI forecasts: forecasted RI that did not occur 
÷ (forecasted RI that did occur + forecasted RI that did not occur). 

http://www.hfip.org/documents/
http://hfip.org/sites/default/files/documents/hfip-strategicplan-yrs5-10-nov05-2014-update.pdf
http://hfip.org/sites/default/files/documents/hfip-strategic-plan-20190625.pdf
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In 2017, Congress passed the Weather Research and Forecasting Innovation Act including Section 104. 
The Hurricane Forecast Improvement Program instructed NOAA to maintain a project to improve 
hurricane forecasting with the goal of developing and extending accurate hurricane forecasts and 
warnings in order to reduce loss of life, injury, and damage to the economy. HFIP has a particular focus 
on improving the prediction of rapid intensification and track of hurricanes, improving the forecast and 
communication of surges from hurricanes, and incorporating risk communication research to create more 
effective watch and warning products. In response to this charge, the HFIP strategic plan was updated 
outlining the research and development needed to continue improving hurricane forecast guidance, 
enhance probabilistic hazard products, and design a more effective tropical cyclone (TC) product suite to 
better communicate risk to the public and emergency management community. Under the updated plan, 
HFIP will continue to address the original goals of reducing track and intensity forecast errors by 20% 
within 5 years and 50% within 10 years, and to extend forecasts out to 7 days, particularly with focus on 
rapid intensification guidance. In addition, the updated plan extends HFIP’s purview to improving 
guidance on predicting storm structure and all hurricane hazards (surge, rain, associated severe weather, 
gusts as well as sustained winds) at actionable lead times for emergency managers (e.g., 72 hours). 
Improved hazard guidance will derive from dynamical model ensembles enabling probabilistic hazard 
products and improved track, intensity change and structure (radii to maximum and 35-knot winds) 
predictions before formation and throughout the storm’s life cycle. Using social science research, HFIP 
will design a more effective tropical cyclone product suite to better communicate risk and transition all 
current tropical hazards products. 

One of the key strategies defined in the revised hurricane forecast improvement strategic plan in response 
to the proposed framework for addressing the Weather Act of 2017, is to advance an operational HAFS. 
HAFS is a multi-scale model and data assimilation package capable of providing high-resolution analyses 
and forecasts of the inner core structure of the TC out to a lead time of 7 days, which is key to improving 
size and intensity predictions, as well as the large-scale environment that is known to steer TCs and 
provides favorable/unfavorable dynamic (e.g., vertical wind shear) and thermodynamic (e.g., 
mid-tropospheric moisture) conditions. HAFS will provide an operational analysis and forecast system 
out to 7 days for hurricane forecasters with reliable, robust and skillful guidance on TC track and intensity 
(including RI), storm size, genesis, storm surge, rainfall and tornadoes associated with TCs. It will 
provide an advanced analysis and forecast system for cutting-edge research on modeling, physics, data 
assimilation, and coupling to earth system components for high-resolution TC predictions within the UFS. 
HAFS is supported under several Hurricane Supplemental projects, (i) 1A-4a: Accelerate Development of 
Moving Nest for HAFS; (ii) 3A-1: Accelerate implementation of the updated HFIP Plan; (iii) 3A-2: 
Accelerate Re-engineering of HAFS; (iv) 2019 Disaster Supplemental Improving Forecasting of 
Hurricanes, Floods and Wildfires HU-2 project (v) 2022 Disaster Relief Supplemental Act HURR1 
project. 

HFIP is organized along two lines of activities: Stream-1 and Stream-2. While Stream-1 works within 
presumed operational computing resource limitations, Stream-2, also called as HFIP Real-time 
Forecasting Experiments (HREx; https://hfip.org/products), activities assume that resources will be 
provided to increase the available computer capability in operational settings, above the one that is 
already planned for the next five years. The purpose of Stream-2 is to demonstrate that the application of 
advanced and innovative science, technology, and increased computing will lead to the desired increase in 
accuracy, and other improvements in forecast performance. Because the level of computing necessary to 

https://hfip.org/products
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perform such a demonstration is larger than can be accommodated by current operational computing 
resources, HFIP developed its own computing system at NOAA’s Earth System Research Laboratories 
(ESRL) in Boulder, Colorado. For instance, in the 2021 season, four versions of HAFS were tested in near 
real-time within the stream-2 HREx. (see section 9 for results) 

1.3. HFIP Baseline for measuring progress 

To measure progress towards the above-defined HFIP goals, a baseline level of accuracy was established. 
The HFIP goals were to reduce track and intensity errors by 20% in 5 years and 50% within 10 years. A 
set of baseline track and intensity errors were developed by NHC, where the baseline is the consensus 
(average) from an ensemble of top-performing operational models evaluated over the period of 2006-2008 
for the North Atlantic basin. For track, the ensemble members were the operational aids GFSI, GFDI, 
UKMI, NGPI, GFNI, and EMXI, while for intensity the members were GFDI, DSHP, and LGEM3 

(Cangialosi, June 2020). Results from HFIP model guidance are then compared with the baseline to assess 
progress. Figure 1 shows the mean absolute errors of the consensus over the period 2006-2008 for the 
North Atlantic basin. A separate set of baseline errors (not shown) was computed for the eastern North 
Pacific basin (Franklin, 2009, 2010). 

To provide a more representative, longer-term perspective, the progress of HFIP models are also 
evaluated in terms of forecast skill. Because a sample of cases from a season might have a different 
inherent level of difficulty from the baseline sample of 2006-2008 (for example, because it had an 
unusually high or low number of rapidly intensifying storms), it is helpful to evaluate the progress of the 
HFIP models in terms of forecast skill as well as error. Here, that evaluation is determined with the 
percent improvement, relative to a statistical model for the same cases. A statistical model is one where a 
number of predictors are combined, using weights that are determined by correlation with past data and, 
consequently, performs better in relatively ‘easy-to-predict’ seasons, and worse in relatively 
‘difficult-to-predict’ seasons. Figure 1 shows the skills of the baseline, baseline errors, and the 5- and 
10-year goals - represented in blue and labeled on the right side of the graph. The goals are presented as 
the percentage improvement over the Decay-(Statistical Hurricane Intensity Forecast) SHIFOR5 and 
(Climatology and Persistence) CLIPER5 forecasts, for the same cases that were used to determine the 
mean absolute baseline error. 

3 See appendix A for details on operational aids (GFSI, GFDI, UKMI, NGPI, GFNI, EMXI,GFDI, DSHP, LGEM) 
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Figure 1: (a) Track and (b) Intensity Error Baseline and Goals, where the forecast errors are represented by 
black lines labeled on the left side of the graph, and the forecast skill is represented by blue lines labeled on 
the right side of the graph. Solid black lines represent baseline forecast errors, while solid blue lines represent 
baseline forecast skill. The 5 and 10 years goals are represented by dashed black lines for errors, and dashed 
blue lines for skill. 

The skill baseline and goals for intensity at all lead times are roughly constant, with the baseline 
representing a ~10% improvement over Decay-SHIFOR5, and the 5- and 10-year goals representing 
~30% and ~55% improvements, respectively. It’s important to remember, however, that normalization by 
CLIPER or (especially) Decay-SHIFOR5 can fail to adequately account for forecast difficulty in some 
circumstances. A hurricane season that features extremely hostile environmental conditions will lead to 
very high Decay-SHIFOR intensity forecast errors (as climatology will be a poor forecast in such years), 
but relatively low errors in dynamical models and NHC official forecasts (as few storms will intensify 
rapidly, making it less challenging for both models and forecasters). This combination of baseline and 
model errors yields an unrealistic skill estimate. Hence, both skill and absolute errors are used to measure 
HFIP model improvements. 

It is also important to note that HFIP performance baselines were determined from a class of operational 
aids known as “early” models. Early models are those that are available to forecasters quickly enough to 
meet forecast deadlines for the synoptic cycle. Nearly all the dynamical models currently used at tropical 
cyclone forecast centers, such as the Global Forecast System (GFS) and HWRF models, are considered 
“late” models because their results arrive too late to be used in the forecast for the current synoptic cycle. 
For example, the HWRF run for 12:00 Coordinated Universal Time or Zulu Time Zone (Z) does not 
become available to forecasters until around 16:00Z, whereas the NHC official forecast based on the 
12:00Z initialization must be issued by 15:00Z, one hour before the HWRF forecast can be viewed. It’s 
actually the older, 06:00Z run of the HWRF model that would be used as input for the 15:00Z official 
NHC forecast, through a procedure developed to adjust the 06:00Z model run, to match the actual storm 
location and intensity at 12:00Z. This procedure also adjusts the forecast position and intensity at some of 
the forecast times as well, and then applies smoothing to the adjusted forecast. This adjustment, called an 
“interpolation” procedure, creates the 12:00Z “early” aid HWRF with 6-hour interpolation (HWFI) that 
can be used for the 15:00Z NHC forecast. Model results so adjusted are denoted with an “I” (e.g., HWFI). 
The distinction between early and late models is important in assessments of model performance provided 
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in subsequent sections, since late models have an advantage of more recent observations/analysis than 
their early counterparts. 

2. Chapter II: HFIP in 2021 

2.1. HFIP Model Systems 

Accurate TC forecasts beyond a few days require a global domain, because influences on a forecast at a 
particular location can come from weather systems elsewhere, far from the particular location. Figure 2a 
shows the steep-step improvements to track predictions for 24, 48, 72, 96 and 120 hours since the 90’s. 
Those advancements have come through developing improved dynamical global models (e.g., GFS), 
further improving resolution and physics in those models, and through advancing DA techniques. Most of 
the GFS developments have been at the National Center for Environmental Prediction (NCEP). 
Nevertheless, one of the first efforts in HFIP was to improve the existing operational global models. Early 
in the program, it was shown that forecasts were improved, particularly in the tropics, by using a more 
advanced DA scheme than the one employed operationally at that time. A version of this advanced DA 
went operational in the GFS model in May, 2012. 

Figure 2: Official NHC (a) Track errors (1960-2021) and (b) Intensity errors (1970-2021) in the Atlantic 
basin. The downward arrow denotes the period HFIP is active. 

While significant track improvements have been achieved since the 1960s, progress in reducing intensity 
errors had been slow until the onset of HFIP in 2009 (Figure 2). Part of the problem was inadequate 
model-grid resolution. It is generally assumed that the hurricane inner core (i.e., the eye-wall region) must 
be resolved to see consistently accurate hurricane intensity forecasts (NOAA SAB, 2006). It is believed 
that the best approach to improve hurricane track and intensity forecasts involves the use of 
high-resolution global models, with at least some being run as ensembles. However, global models and 
their ensembles are likely to be limited by computing capability, for at least the next five years, to a 
horizontal resolution no finer than about 8-10 km, which is inadequate to resolve the inner core of a 
hurricane. Maximizing improvements in hurricane intensity forecasts will, therefore, require 
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high-resolution regional models, or global models with moveable high-resolution nests, perhaps also run 
as an ensemble. During the last 12 years, the focus has been on improving the intensity forecast, which for 
decades has significantly lagged behind the track forecast. For that purpose, regional models with 
(two-way interactive) moving nests capable of resolving the inner core structure of hurricanes are usually 
used for intensity predictions. The domains of the hurricane regional models are usually larger than their 
CONUS counterparts. The HWRF and HMON that were developed during HFIP are prime examples. 
Track predictions from these regional models, especially HWRF, have been shown to improve with larger 
domains (Zhang et. al., 2016; and Alaka et. al., 2017; 2022). The Basin-Scale HWRF (HWRF-B) has 
demonstrated the usefulness of expanding the regional domain for TC predictions and paving the way 
towards the advancements of Global-to-local scale HAFS. 

The error and skill performance statistics below will highlight the last ten years, through 2021, with a 
particular emphasis on 2021. The 2021 North Atlantic hurricane season was above average. There were 21 
named storms, of which 7 developed into hurricanes, with 4 of those becoming major hurricanes. There 
were 5 TCs that underwent RI in the North Atlantic basin: Elsa, Grace, Ida, Larry, and Sam. There were 8 
landfalls in the U.S. from 6 tropical storms and 2 hurricanes. A total of 399 forecasts were issued in the 
Atlantic. In the eastern North Pacific, there were 19 named storms, of which 8 developed into hurricanes 
with 2 major hurricanes. 

2.2. Operational HWRF and HMON systems (Stream 1) 

a. HWRF System 

One of the major accomplishments of HFIP has been the development of the storm-following, 
double-nested, high-resolution HWRF model, and its transition to operations. HWRF is a joint 
development between NOAA research and operations, with significant support from the Developmental 
Testbed Center (DTC), UCAR, and the TC community. It is one of the top-performing track prediction 
models, and is paving the way to improve operational intensity forecasts all over the globe. The HWRF 
model is based on the Non-Hydrostatic Mesoscale Model on an E-grid (NMM) dynamical core and can be 
coupled to Princeton Ocean Model (POM) or HYbrid Coordinate Ocean Model (HYCOM). It is a part of 
the general WRF infrastructure, but using the NMM dynamic core, which is more focused on supporting 
operations (Biswas et al., 2018; Tallapragada et. al., 2014). HFIP has coordinated the following HWRF 
improvements: (i) storm-following nesting, (ii) horizontal grid spacing (3 km in 2012, 2 km in 2015, and 
1.5 km in 2018), (iii) physical parameterizations, and (iv) initial conditions enhanced by aircraft 
observations. These improvements have led to improved numerical guidance that TC forecasters use in 
real time. HWRF is also the main driving dynamical model of the Real-Time HFIP Corrected Consensus 
Approach (HCCA) for TC Intensity Guidance at NHC (Simon et. al., 2018) and has become the flagship 
intensity prediction tool for hurricane forecasting at NWS. 

In the last ten years (2012-2021), the HWRF system was upgraded considerably under HFIP, including 
the following annual upgrades. The model code for each year is provided for reference. 

● In 2012 (H212), for the first time, the double-nested, cloud-resolving version of HWRF was run 
at 3 km horizontal resolution (27/9/3 km version) with improved physics based on observations 
(Gopalakrishnan et. al., 2011; 2012; 2013; Goldenberg et. al., 2015). 
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● In 2013 (H213), upgraded physics and vortex initialization were adopted. 
● In 2014 (H214), HWRF was run in real-time in all global basins beyond the North Atlantic. 
● In 2015 (H215), HWRF implementation consisted of increased horizontal resolution from 27/9/3 

km to 18/6/2 km across all domains, continued improvement of the Nest-Tracking-Algorithm, 
advanced vortex initialization, and improved products. 

● In 2016 (H216), new SAS and GFS-EDMF physics suites were implemented. This was the 
watermark year for 5-year HFIP improvements. 

● In 2017 (H217), a dramatically improved DA system was implemented. 
● In 2018 (H218), the HWRF implementation incorporated a further increment of the horizontal 

resolution, from 18/6/2 km, to 13.5/4.5/1.5 km, as well as continued improvement of the 
Nest-Tracking-Algorithm, and advanced vortex initialization. With the 2018 upgrade in model 
resolution, the HWRF model is now the highest resolution hurricane model ever implemented for 
operations in the NWS. 

● In 2019 (H219), HWRF was not operationally upgraded due to the NCEP Central Operations 
(NCO) moratorium. 

● In 2020 (H220), HWRF was upgraded to two-way ocean coupling, one-way wave-model coupling 
and the high-resolution land-sea masks for the moving nests. 

● In 2021 (H221), HWRF was synced with the latest UFS upgrades, but otherwise there were no 
HWRF-specific upgrades. 

Figure 3 presents a summary of improvements since the start of HFIP. These improvements are measured 
in terms of mean forecast skill scores using climatology and persistence (OCD5) as a reference model for 
each respective season (e.g., 2011 forecasts of OCD5 are used as a baseline for H211 forecasts). The last 
three operational versions of HWRF (H219, H220, and H221) were chosen especially to illustrate 
improvements over the last decade (i.e., compare against H211) and to account for the variability of 
model performance from one year to the next. 

Figure 3: For H211 (pink cross), H219 (red left-pointing triangle), H220 (green right-pointing triangle) and 
H221 (blue circle), the following is shown: (a) track forecast skill relative to NHC’s climatology-persistence 
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skill baseline (OCD5), and (b) intensity forecast skill relative to OCD5. The HFIP baselines (solid), HFIP 
5-year goals (dashed), and HFIP 10-year goals (dot-dashed) are shown in gray for track, OCD5 is also known 
as CLIPER5, and, for intensity, OCD5 is also known as Decay-SHIFOR. The verification excludes actual and 
forecast positions that are inland. 

Figure 3a illustrates the track forecast skill of the four HWRF versions relative to OCD5. Overall, track 
forecasts have steadily improved over the last decade, with average track predictions performing ~20% 
better at all forecast lead times in H221 compared to H211. H221 had better performance than the 
previous two versions of HWRF at most lead times, with H219 showing particularly poor performance 
due to difficult TC track predictions (e.g., Dorian stalling over the Bahamas). For the last three years, 
track skills have been improved between 30-60% at all lead times, with the H221 track skill maximizing 
above 60% at 72 h. Although HWRF track forecasts have clearly improved over the last decade, even 
H221’s performance is barely above the HFIP baseline and below the HFIP 5-year goal. We believe 
further improvements may be possible with HAFS (section 9). 

Figure 3b portrays the progress of HWRF in forecasting maximum wind speed (i.e., intensity), measured 
in terms of skill relative to OCD5. Through 2011, HWRF operated with a single 9 km-resolution moving 
nest that could automatically track hurricanes4 (Gopalakrishnan et. al., 2006). Although this was a huge 
advancement for TC predictions, the resolution was too coarse to capture processes critical for 
intensification, and, consequently, H211’s intensity forecast performance was quite poor, especially at 
longer lead times. For the last three years, the intensity skill has been positive, hovering between 15-30% 
at lead times of 36 h and longer. At those lead times, the intensity forecast performance exceeded the 
HFIP baseline. 

4 It should be noted that the plots between 2016 and 2020 showed no statistically significant differences. The 
differences could be due to year-to-year variability. 
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Figure 4: For H211 (pink cross), H219 (red left-pointing triangle), H220 (green right-pointing triangle) and 
H221 (blue circle), the following is shown: (a) intensity forecast skill for non-RI cases, (b) intensity forecast 
skill for RI cases (i.e., intensification of ≥30 kt in 24 h), (c) intensity errors (in kt) for non-RI cases, and (d) 
intensity errors for RI cases. Intensity changes are calculated over the preceding 24-h period for each forecast 
time ≥24 h. Forecast skill is computed relative to OCD5. The verification excludes actual and forecast 
positions that are inland. 

Rapid Intensification of TCs are of major concern to HFIP since the start of the program. RI forecasts are 
particularly challenging because the timing, duration, and intensity change associated with each RI event 
are not well-predicted by numerical weather prediction models, in general. Even a high-resolution model 
like HWRF has struggled to strike an optimal balance between increasing RI detection while limiting 
false alarms. 

In Figure 3b although HWRF performance has shown improvements in an overall sense, clearly there is 
noticeable degradation in performance of the 2021 HWRF in terms of skill -vs-OCD. We stratified the 
samples further in terms non-RI and RI events to understand this degradation in HWRF skill. Figure 4a 
and b (Top panel) shows the skill for non-RI and RI cases and Figure 4c and d (Bottom panel) shows the 
mean absolute errors for the stratified samples 
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The conclusions can be summarized as follows: 

● In general, H221 skill was worse than the previous two seasons because climatology and 
persistence performed better in 2021, i.e., 2021 was an “easier” year for TC predictions (Figure 
4). 

● H221 intensity forecast errors were consistent with those from H220 for non-RI events, and both 
H221 and H220 had noticeably lower mean absolute errors at 96 h and 120 h compared with 
H219 (Figure 4c). 

● RI predictions improved significantly in 2021 at short lead times 

(≤48 h). This is reflected in both mean absolute errors and forecast 

skill (Fig. 4b,d). However, RI predictions were the worst in the last 3 

years at longer lead times, very likely contributing to loss of skill 

in HWRF intensity predictions in 2021. 
● Only two RI events occurred that corresponded to 96 h and 120 h forecasts from H221, both of 

which were for Hurricane Grace in the Gulf of Mexico. 
● Although mean absolute errors are larger for RI events than for non-RI events, skill is higher at 

most lead times for RI events. This indicates that HWRF is generally performing much better 
than climatology and persistence for RI events than for non-RI events. 

● It appears that the use of mean absolute error is less prone to variability from year to year 
especially when the sample sizes are small. 

● Sustained HFIP research and development is necessary for further improvements in intensity and 
intensity change predictions (RI and RW). 

b. HMON System 

Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic model (HMON) was developed to provide 
higher-resolution intensity and track forecast guidance to NHC, along with HWRF. HMON replaced the 
legacy (hydrostatic) Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model, being 2-way 
coupled to HYbrid Coordinate Ocean Model (HYCOM), which was used as the second dynamical model 
along with HWRF for intensity guidance until 2016. The HMON model is based on the Non-Hydrostatic 
Mesoscale Model on a B grid (NMMB) dynamic core, which is currently being used in NCEP operational 
systems - the North American Mesoscale (NAM) Model and the Short Range Ensemble Forecast (SREF) 
model. The HMON was built using shared infrastructure with unified model development within the 
NOAA Environmental Modeling System (NEMS) and could also be coupled with other (ocean, wave, 
land, surge, inundation, etc.) models within the NEMS infrastructure. Use of NEMS also paves the way 
for future use of physics packages like CCPP (Common Community Physics Package). HMON has been 
in operations since 2017 and has demonstrated forecast consensus improvement. In 2020, several 
upgrades were made to the model infrastructure and physics including an increase of the vertical level 
from 51 to 71. 

2.3. Operational Hurricane Guidance Improvements 

NHC uses several deterministic guidance models for their official intensity forecasts, including NCEP’s 
HWRF and HMON regional dynamical models, several global models, and the D-SHIPS 
(Decay-Statistical Hurricane Intensity Prediction Scheme) and LGEM (Logistics Growth Equation 
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Model) statistical models. As noted earlier, the dynamical models are not available in time to be used by 
the NHC forecasters, so a method to interpolate the predictions from the previous forecast cycle has been 
developed. The interpolated versions are called “early” models. In all of the discussion below, only early 
models are considered. Several consensus intensity models are also used as input to the NHC forecast. 
The simplest is IVCN (Intensity consensus of at least two forecasts), which is a linear average of the 
D-SHIPS and LGEM statistical models, the early versions of the HWRF and HMON regional models, 
and the U.S. Navy’s COAMPS-TC regional hurricane model that uses GFS (Global Forecast System) 
initial and boundary conditions also called CTCX. IVCN is computed whenever two or more of the above 
models (HWRF, HMON, CTCX, D-SHIPS and LGEM) are available. IVCN is used as the basis for 
performance measures for RI predictions instead of individual model guidance from HWRF and HMON 
(section 6c). 

a. Track Guidance 

In 2021, official Atlantic track forecasts (Figure 5a) were very skillful and close to or even better than the 
best-performing consensus aids - FSSE (Florida State University Super-Ensemble Corrected Consensus), 
HCCA (HFIP Corrected Consensus Approach) and TVCA (Track Variable Consensus of at least two 
forecasts) (Cangiolosi, 2021). GFSI (GFS with 6 hour interpolation) was the best dynamical model at all 
lead times. AEMI (GEFS with 6 hour interpolation), EMXI (ECMWF with 6 hour interpolation), HMNI 
(HMON with 6 hour interpolation) and HWFI (HWRF with 6 hour interpolation) came in second place, 
very close to one another. CTCI (COAMPS-TC 6 hour interpolation) and CMCI (Canadian Global Model 
6 hour interpolation) were less good at longer lead times. NVGI (Navy Global Environmental Model 6 
hour interpolation) lagged behind other models. Similar to the previous year, GFS outperformed EMXI 
track skills at all lead times. 

In the eastern Pacific (Figure 5b), the official forecasts were very skillful, very close to TVCE, HCCA, 
FSSE consensus models. GFSI and AEMI were the best individual models through 72 h, EMXI was best 
at 96 and 120 h. HMNI, HWFI and CMCI were not very good. NVGI and EGRI lagged behind other 
models. 

Figure 5: Official track forecast skill in 2021 for the (a) Atlantic (left) and (b) eastern Pacific (right) basins. 
Numbers immediately above the X-axis show the total number of cases covered by each data point. 
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b. Intensity Guidance 

Intensity forecast skill for the 2021 season is shown in Figure 6. In the Atlantic basin (Figure 6a), official 
forecasts were very skillful, as good as or better than the consensus aids. Among the consensus models, 
FSSE was the best till 96 h. HMNI was a strong performer and the best individual model at most lead 
times. HWFI and CTCI did not do as well as HMNI. DSHP and LGEM were fair performers, but not as 
good as HMNII and consensus models. GFSI was somewhat competitive and EMXI was skillful only at 
longer lead time. 

Figure 6: Official intensity forecast skill in 2021 for the (a) Atlantic Basin (left) and (b) East Pacific Basin 
(right). Numbers immediately above the X-axis show the total number of cases covered by each data point. 

In the eastern Pacific (Figure 6b), official intensity forecast performance was good as the best consensus 
aids (IVCN, HCCA, FSSE). Consensus aids were generally best, except at 96 and 120 h where EMXI and 
DSHP had more skill. HMNI was a strong performer and better than HWFI. DSHP and LGEM were fair 
performers. GFSI and EMXI were competitive in this basin. 

c. State-of-art in RI guidance 

One of the HFIP goals is to “reduce intensity forecast guidance errors by 50% for RI events”. After 
consideration of several metrics to measure RI progress, HFIP chose to use the mean absolute error for a 
subset of cases where RI was forecast or observed. The new metric is less prone to large year to year 
variability due to small sample sizes than other metrics such as probability of detection or false alarm rate. 
The HFIP RI performance metric, baseline, and initial progress toward the RI forecast goal are discussed 
below. 

The RI metric is the mean absolute error (MAE) of the IVCN consensus, for the Atlantic and eastern 
Pacific basins combined, evaluated for only those verification times when RI was either ongoing or was 
forecast. Specifically, this means the verifying time must satisfy at least one of the following criteria: 

● A 30-kt or larger intensity increase in the best-track intensity, relative to the best-track intensity 
24-h prior to the verification time. 
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● A 30-kt or larger forecast intensity increase in any of the IVCN member models, relative to the 
forecast intensity 24-h prior to the verification time. 

With this as the metric, HFIP then defined the baseline sample as those 24-, 36-, 48-, 72-, 96-, and 120-hr 
forecasts satisfying the above criteria for the combined Atlantic and eastern Pacific basins over the period 
2015-17. When non-consensus forecasts (e.g., an individual model such as HWFI, or the NHC official 
forecast, OFCL) are evaluated relative to the RI baseline or target, criteria (2) above should be applied to 
each of the models forming the homogeneous sample. 

By considering both RI cases occurring in the best track and the RI cases being forecast, the metric 
ensures that overly aggressive models are penalized for false alarms. A full assessment of our ability to 
forecast RI requires consideration of false alarms as well as misses, and from an operational standpoint, a 
metric that considers both types of errors will be of greater value to forecasters who must gauge the 
credibility of a forecast of RI when one is presented to them. 

The values of the RI baseline are presented in Table 1 and Figure 7. One complication in determining the 
baseline values was that the membership of IVCN at any particular forecast time is not recorded 
operationally nor readily determined after the fact, and the sample definition depends on checking each 
member’s forecast for occurrences of RI. Furthermore, the composition of IVCN changed over the 
baseline period 2015-17. For these reasons, the HFIP baseline errors were determined from a single 
recomputed version of IVCN comprising models used in the operational IVCN at any time from 2015-17; 
these models were DSHP, LGEM, GHMI, HWFI, and CTCI. It is seen that our ability to predict RI during 
the baseline period was only weakly dependent on forecast lead time; the errors were high even at 24 h 
(26 kt) and saturated quickly. In terms of skill relative to climatology/persistence, a peak is seen from 
72-96 h but skill was minimal throughout the 5-day forecast period. It’s worth noting that the target 
MAEs in Table 1 are all large enough to be observationally detectible, in contrast to the overall (non-RI) 
intensity targets, which are small enough that it may be difficult to distinguish them from the best-track 
uncertainty. 

Table 1: HFIP RI performance measures baseline and target errors. Baseline errors are the mean absolute 
errors over the period 2015-17 for the Atlantic and eastern North Pacific for the variable consensus 
comprising at least two of the models DSHP, LGEM, GHMI, HWFI, and CTCI. Target errors represent 50% 
of the baseline errors. 

Verification Time (h) Baseline (kt) Target (kt) 

24 26.1 13.1 
36 28.6 14.3 
48 31.4 15.7 
72 36.9 18.5 
96 31.3 15.6 
120 32.1 16.1 
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Figure 7: HFIP RI performance measures baseline errors and skill. Baseline errors are the mean absolute 
errors over the period 2015-17 for the Atlantic and eastern North Pacific for the variable consensus 
comprising at least two of the models DSHP, LGEM, GHMI, HWFI, and CTCI. Skill values are computed 
relative to OCD5. 

Since the baseline period ended in 2017, NHC’s operational intensity consensus has not changed, 
comprising DSHP, LGEM, HWFI, CTCI, and HMNI during each season from 2018-2021. Figure 8 
shows a verification of the HFIP RI intensity metric for the 2021 season. Note that the NHC best tracks 
were not final at the time of these verifications, so the results are preliminary. The errors of the RI metric 
are seen to be well below the baseline errors at all forecast lead times: 42% below the baseline at 24 h, 
44% below at 48 h, and 36% below at 72 h. 
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Figure 8: HFIP RI performance measure for 2021. Errors for the consensus from 24-120 h are shown by the 
red line, while HFIP baseline errors are shown by the dashed black line. Results are preliminary since the 
2021 best tracks were not final at the time these verifications were performed. Number of cases for each 
forecast lead are given along the bottom of the diagram. 

Figure 9 shows how the RI intensity metric has performed over the past few seasons. The consensus 
forecast shown here for each season corresponds to NHC’s operational composition of IVCN for that 
season. MAEs for each season are shown at 24, 48, and 72 h, with the HFIP baseline values given by the 
three asterisks plotted at 2016, the midpoint of the baseline period. Comparison of the 2015-17 baselines 
to mean errors over the most recent three years 2019-21 is very encouraging: at 24 h the baseline error 
(26.1 kt) has been reduced by 34% (to 17.3 kt), at 48 h the baseline error (31.4 kt) has been reduced by 
27% (to 22.9 kt), and at 72 h the baseline error (36.9 kt) has been reduced by 27% (to 26.8 kt). 
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Figure 9: HFIP RI performance measure at 24, 48, and 72 h for 2015-21. The consensus evaluated for each 
season corresponds to NHC’s operational composition of IVCN for that season. Results for 2021 are 
preliminary. HFIP baseline errors are given by the asterisks plotted for the year 2016. Number of cases for 
each forecast lead are given along the bottom of the diagram. 

Examination of IVCN error distributions illustrates where the forecast improvements have been coming 
from. Figure 10 shows the 24-h error distributions for the baseline period (top panel) and for the past two 
seasons 2020-21 (bottom panel). During the baseline period, nearly all the errors for this metric were 
negative, with a mode at -25 kt, and a few errors as large as -70 to -80 kt. Over the past two seasons, 
however, the mode hasn’t changed much, suggesting that missed RI cases are still an issue; however, the 
distribution has sharply shifted to the right and broadened, with a large cluster of errors now near zero. 
Clearly, the models are now capturing RI much more frequently than they were during the baseline 
period. Furthermore, during the past two seasons there have been fewer very large negative errors. 
Examination of the error distributions at 48 h (not shown) indicate similar but less dramatic changes. 
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Figure 10: Error distributions of the HFIP RI performance measure at 24 h for the baseline period (2015-17), 
left, and for 2020-21, right. Results for 2021 are preliminary. 

Collectively, these results indicate that very strong progress is being made toward reaching the HFIP RI 
goal of a 50% error reduction. If the 2021 season’s results are representative, the HFIP RI target appears 
to be well within reach. It’s also encouraging to see that the improvements in RI guidance are being 
reflected in NHC official forecast errors; Figure 11 shows downward OFCL error trends for RI cases that 
are very similar to the trends shown in Fig. 3 for the consensus. 

Figure 11: NHC official forecast error for RI cases at 24, 48, and 72 h for 2015-21. Results for 2021 are 
preliminary. Number of cases for each forecast lead are given along the bottom of the diagram. 
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During the past year a description of the HFIP RI performance metric was published, along with a history 
of operational forecasting of RI at the National Hurricane Center (DeMaria et al., 2021). 

2.4. Next Generation HFIP Goals and Plans 

The Weather Research and Forecasting Innovation Act of 2017 (also known as The Weather Act) required 
NOAA to prioritize research that improves forecasts and warnings for the protection of life, property, and 
the enhancement of the national economy. In response to Section 104 of the Weather Act, the new HFIP 
Strategic Plan detailing the specific research, development, and technology transfer activities necessary to 
sustain HFIP’s next generation of science and R2O challenges has been approved. 

To improve TC forecasting with the goal of developing and extending accurate TC forecasts and warnings 
in order to reduce loss of life, injury, and damage to the economy, the next generation of HFIP will focus 
on: 

i. Improving the prediction of rapid intensification and track of TCs; 
ii. Improving the forecast and communication of surges from TCs; and 

iii. Incorporating risk communication research to create more effective watch and warning products. 

In order to address the three primary focus areas outlined above, HFIP has developed a set of specific 
goals and metrics to improve the accuracy and reliability of TC forecasts and warnings and increase the 
confidence in those forecasts to enhance mitigation and preparedness decisions by emergency 
management officials at all levels of government and by individuals. 

Improved model guidance for TC formation, track, intensity and size will be essential to address all three 
areas. Basic TC forecast parameters will be improved, including the formation time and location, position, 
maximum wind (i.e., intensity), and storm size. Estimates of the uncertainty of those parameters will also 
be enhanced, enabling better risk communication to end users through accurate probabilistic information 
(i.e., information that considers the likelihood, or probability, that an event will occur). Rapid 
intensification remains an especially important and challenging forecast problem. Specific goals and 
metrics are defined for the prediction of the basic TC forecast parameters, new extended range forecasts, 
rapid intensification, and TC formation. 

HFIP will build upon the original goals of the project through the following specific goals and metrics: 

● Reduce forecast guidance errors, including during rapid intensification, by 50 percent from 2017; 
● Produce 7-day forecast guidance as good as the 2017 5-day forecast guidance; 
● Improve guidance on pre-formation disturbances, including genesis timing, and track and 

intensity forecasts, by 20 percent from 2017; and 
● Improve hazard guidance and risk communication, based on social and behavioral science, to 

modernize the TC product suite (products, information, and services) for actionable lead-times for 
storm surge and all other threats. 

Six key strategies were developed to address these new goals, of which the main strategy is the ongoing 
development of a multi-scale modeling system, referred to as HAFS. 
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2.5. Development of Hurricane Analysis and Forecast System (HAFS) 

The HAFS is NOAA’s next-generation multi-scale numerical model, with data assimilation package and 
ocean/wave coupling, which will provide an operational analysis and forecast out to seven days, with 
reliable and skillful guidance on Tropical Cyclone (TC) track and intensity (including RI), storm size, 
genesis, storm surge, rainfall and tornadoes associated with Tropical Cyclones. The UFS is a 
community-based, coupled comprehensive Earth system modeling system based on the FV3 dynamical 
core, whose numerical applications span local to global domains and predictive time scales from 
sub-hourly analyses to seasonal predictions. It is designed to support the Weather Enterprise and to be the 
source system for NOAA's operational numerical weather prediction applications. The HAFS will be a 
part of UFS geared for hurricane model applications. 

The current version of HAFS includes following major components: (a) Cloud permitting high-resolution, 
storm-following moving nest; (b) Advanced vortex initialization; (c) Inner-core data assimilation; (d) 
scale-aware physics uniquely calibrated for TC application (e) Ocean coupling, and (f) High-resolution 
observations to support the DA. 

a. Cloud permitting high-resolution moving nest 

Central to the development of HAFS is the FV3 dynamical core with an embedded storm-following 
moving nest capable of tracking the inner core region of the hurricane at 1-2 km resolution (cover 
picture). Although the FV3 model dynamic core itself is fully tested with convection-allowing grid 
spacing and could be run both as global and regional models, the current nesting capabilities are very 
limited, at best to severe weather applications over CONUS. However, hurricane forecast applications 
require storm following, telescopic nests at about 1-2 km resolution that can be located anywhere in the 
globe or in a regional domain and should be capable of following tropical storms for several days. In 
addition, unlike for severe weather applications (eg. CAM), two-way interactive nests are essential for 
improving the accuracy of TC forecasts. AOML, in partnership with EMC and GFDL, is working on 
these developments to transition advances in HWRF to FV3-HAFS under hurricane supplemental (1A4 of 
the supplemental project). 

b. Vortex initialization 

VI is one of the key components in the hurricane model system. It consists of vortex relocation, and size 
and intensity corrections. VI procedure is necessary to provide accurate background fields for the data 
assimilation. Besides, VI improves the initial intensity of TCs where observation is spare. VI procedure is 
based on the model start option (cold start or warm start) and initial storm intensity (i.e., maximum wind 
speed). The basic strategy of this scheme is to extract the hurricane vortex from the previous 6-h 
hurricane model or GDAS forecast field and relocate and merge it to the model initial field after removing 
a weak storm vortex in the GDAS field. Especially, before the extracted hurricane vortex is blended with 
the model initial field, it undergoes size and intensity correction so that the adjusted hurricane vortex is 
well matched with the observation: the Tropical Cyclone Vitals Database (TCVitals). 

c. Inner-core Data Assimilation 

Hurricane data assimilation schemes do not have a counterpart. While global models focus on synoptic 
scale observations, and CAM applications rely on local and storm scale data, both inner core as well as 
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synoptic scale observations are essential for further improving both track and intensity predictions. 
Central to producing a good analysis is the need for developments of a scale-spanning data assimilation 
scheme. Though great strides have recently been made in HWRF DA, more work remains to be done. In 
particular, there are a number of known problems in the current hurricane DA system that will require 
varying degrees of effort to resolve. These include: (i) Vortex initialization procedures need to work more 
seamlessly with the data assimilation system. The current procedure, while helpful in some ways, 
destructively interferes with the data assimilation system when inner-core observations are available. A 
possible alternative that needs to be explored is to assimilate synthetic observations to supplement 
inner-core observations. (ii) All state variables need to be carried from one cycle to the next, which is not 
currently the case in HWRF. Most crucially, HWRF currently does not cycle condensate or vertical 
motion, which is known to impact the analysis. (iii) The current self-cycled three-dimensional hybrid 
ensemble-variational (3DEnVAR) HWRF DA system improves upon the old DA system, but more 
development is needed to improve dynamic balance, particularly for intense hurricanes where inner core 
gradients are extremely large. Among necessary improvements are an upgrade to four-dimensional hybrid 
ensemble-variational data assimilation (4DEnVAR) from 3DEnVAR and also to cycle DA more 
frequently (e.g., every hour instead of every 6 hours). (iv) The current HWRF DA makes suboptimal use 
of observations. For example, though all reconnaissance data are now assimilated into HWRF, much of 
this data has had no assumed observation error tuning. Though the HWRF system assimilates satellite 
radiances, it currently uses bias correction from the global model, which is problematic since HWRF and 
the global model do not have the same biases. (v) The inner-core data assimilation capability for HAFS 
will be aligned with Joint Effort for Data Assimilation (JEDI) developments. AOML in joint partnership 
with EMC is working on these HAFS developments under hurricane supplemental effort. 

d. Scale-aware Model Physics 

Some of the HWRF, observation-based physics such as the surface and boundary layer, and microphysical 
parameterization schemes have been found to improve tropical cyclone structure and intensity predictions, 
which is critical for meeting the HFIP goals. For instance, the boundary layer and surface layer 
parameterization schemes have been proven to improve hurricane size predictions almost by 50% 
(Gopalakrishnan, et al., 2013 and Tallapragada et al., 2014). The HWRF physics is currently being 
transitioned to the HAFS system under 2018 Hurricane Supplemental funding. In addition, HFIP is 
seeking opportunities for unification of physics between various UFS applications in consultation with the 
UFS Physics Working Group (3A1 and 3A2 of the supplemental project). 

e. Two-way Ocean coupling 

The ocean model component of HAFS will use HYbrid Coordinate Ocean Model (HYCOM) that is based 
on 3D free-surface, primitive governing equations. Solutions are sought on Arakawa C-grids at 
resolutions of 1/12-degree and 41 hybrid z-sigma in horizontal and vertical, respectively. Initial and 
boundary conditions (ICs/BCs) are provided in real-time via subsetting NCODA-based nowcasts and 
forecasts from global Real-Time Forecast Ocean System (RTOFS), respectively. Subgrid turbulence 
mixing is simulated by KPP mixing. For better simulations of the upper ocean structure, particularly of 
freshwater barrier and freshwater lenses, use of model precipitation and river freshwater discharge will be 
included in the future. A plan for ocean DA is to employ RTOFS-DA based on the 3DVAR approach, 
which replaces the subset of global RTOFS nowcasts. 
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f. Observations 

Apart from synoptic-scale observations used for NWP and in global model data assimilation schemes, 
airborne observations are critical for improving TC predictions. In the Atlantic basin, Air Force Reserve 
C-130 and NOAA WP-3D aircraft are used to sample TCs whenever possible to provide critical 
observations of the location, strength, and structure of the storm circulation. Sampling of the environment 
is typically accomplished by the NOAA G-IV aircraft. These manned aircraft are equipped with a variety 
of instruments that sample the wind, temperature, moisture, pressure, precipitation, and ocean surface and 
subsurface temperature and salinity, current, and wave fields within and around TCs (e.g., with 
flight-level measurements, dropwindsonde, airborne Doppler radar, Stepped Frequency Microwave 
Radiometer, lower fuselage radar, and airborne expendable bathythermographs/current profilers). 
Experimental airborne observing technologies, such as Light Detection and Ranging (LIDAR), have the 
ability to sample the wind field in the absence of precipitation scatterers. Unmanned aerial systems, such 
as the Coyote and Global Hawk can sample temperature, moisture, and pressure fields in the planetary 
boundary layer of hurricanes, and over vast areas at very high altitudes for extended periods of time, areas 
that can’t be reached by manned aircraft because of safety and/or aircraft performance limitations. These 
experimental observing technologies could potentially fill gaps in the current observing system, providing 
critical measurements needed to more fully capture the structures important to TC structure and intensity 
change. Many of the inner-core observations provided by AOML have been used for not only improving 
DA but also for improving model parameterization schemes. HAFS will take advantage of advancements 
in these observing technologies to optimize sampling of the TC inner-core and environment and provide 
the needed support for forecast, analysis, model initialization and evaluation, current and future data 
impact studies (OSEs and OSSEs), and process studies. 

Remote-sensing sea surface temperature (SST), sea surface salinity (SSS) and absolute dynamic height, 
temperature and salinity profiles from various observing platforms are routinely used for Ocean DA at 
this time. However, there are a couple of invaluable ocean observing programs, such as the US Integrated 
Ocean Observing System (IOOS) Program and Global Drifter Program (GDP), which at least provides 
synoptic oceanic conditions. Systematic ocean target observations collecting surface and subsurface 
temperature and salinity before, during and after a TC are ideal to provide more realistic enthalpy flux 
exchange and accurate assessments of TC ocean response at a TC scale. In particular, concurrent and 
co-located samples covering both the air and sea (including the air-sea boundary layer) near the TC field 
are absolutely crucial. Future sUAS observations (and SST sondes) could be helpful with several existing 
(and new/proposed) requirements. 

While active developments of the HAFS system enlisted above are ongoing, four HAFS configurations 
were run under Stream-2. Some of the preliminary results where the operational models struggled, 
showed promise in the next generation hurricane forecast system i.e. HAFS. 

2.6. Important HREx Results: HAFS Experimental systems 

There has been steep-step progress in HAFS testing in the last three years. In 2019, HREx demonstrated the 
skill of two versions of HAFS in predictions of TC track and intensity (HAFS-SAR or HAFS-A; Dong et al. 
2020 and HAFS-globalnest or HAFS-B; Hazelton et al. 2021). The 2020 experiments built off of this 
success with further improvements to HAFS. In 2020, both versions of HAFS have evolved into a unique 
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testbed for different sets of activities. In 2021, the real-time experiments featured tests of several different 
configurations of HAFS, allowing for tests of different grid layouts, physics options, and initialization 
methods in advance of operational implementation in 2023. Four configurations of HAFS were conducted 
in the 2021 real-time hurricane season, with detailed information listed in Table 2. 

Table 2: Model configurations for the 2021 real-time, HAFS-SAR (HAFA), HAFS-globalnest (HAFB), 
HAFS-SAR With DA (HAFD), and HAFS-SAR ensemble experiments. 

HAFS-A HAFS-B HAFS-D HAFS-E 

Resolution/ 
Model top 

~3km (ESG), 
L91/10hPa 

~13-3km global-nest, 
L75/2hPa 

~3km (ESG)/L91, 
10hPa 

~6km, L64, 10hPa 

Domain 
~94º✕65º, 
3121✕2161 

Global ATM:(C768), 
Nest ATM:~79º✕43º 
OCN: ~330º✕89º 

~94º✕65º, 
3121✕2161 

~86º✕58º, 
1441✕1081 

IC/BC GFSv16/3hrly GFSv16/3hrly GFSv16/3hrly GEFS/6hrly 

Coupling CMEPS-HYCOM CMEPS-HYCOM CMEPS-HYCOM No ocean model 
Ocean IC RTOFSv2 RTOFSv2 RTOFSv2 NSST 

Data 
Assimilation 

No No 
Yes (addl:TDR, 
METAR, meso GOES-R 
AMVs) 

No 

Radiation RRTMG (30min) RRTMG(30min) RRTMG(30min) RRTMG(60min) 

PBL/Surf M-TKE-EDMF/M-GFS M-TKE-EDMF/M-GFS M-TKE-EDMF/M-GFS M-TKE-EDMF/M-GFS 

GWD orographic GWD saGWD orographic GWD orographic GWD 

CP/MP saSAS/GFDL saSAS/GFDL saSAS/GFDL saSAS/GFDL 

LSM NOAH NOAH NOAH NOAH 

The hurricane track and intensity forecast skills of these four experiments are compared along with two 
NOAA’s current operational tropical cyclone prediction systems, HWRF and HMON (figure 12). The 
results demonstrated that HAFS configurations have skillful track forecasts than HWRF, except for 
HAFS-E track forecasts after day-3, likely due to coarser horizontal and vertical resolutions than other 
configurations and due to lack of ocean coupling (Figure 15a). The intensity forecast skills are mostly 
improved in all HAFS experiments after day-2, but are still behind HWRF before day-2 (Figure 15b). It 
should be noted that the vortex initialization (VI) procedure was not included in these HAFS experiments. 
The results indicate the importance of VI procedure and inner-core DA for the intensity forecasts at earlier 
forecast hours. 
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Figure 12: Track (a) and intensity (b) forecast skills from the 2021 season for HWRF (purple), HMON 
(green), HAFS-A (cyan), HAFS-B (orange), HAFS-D (red), and HAFS-E (yellow). 

a. HAFS-A experiment (HAFS v0.2A) 

HAFS-A was the stand alone regional (SAR) version of HAFS, featuring a stand-alone static nest domain 
covering the North Atlantic basin. HAFS-A is an atmosphere/ocean coupled system, and serves as a 
baseline for other configurations. 

The atmospheric component (FV3) of HAFS-A configuration uses a C3091 (3-km) regional Extended 
Gnomonic Grid (ESG) with 91 vertical levels. The experiment runs four times a day at 00, 06, 12, and 
18Z cycles, when there are active storms. Each cycle will produce a 126-hour forecast with 3-hourly 
outputs, including the ATCF format track file with the storm positions and intensities. The initial 
condition and 3-hourly lateral boundary conditions for the atmospheric component model come from the 
operational GFS netcdf and grib2 format input files. 

The ocean component uses the HYCOM ocean model, which is at 1/12-degree horizontal resolution with 
41 hybrid z-isopycnal layers. The ocean model takes initial conditions subsetting from the nowcast (for 
00Z cycle) and forecast products (for 06, 12 and 18Z cycles) of the global RTOFS, and uses the persistent 
lateral boundary conditions. The ocean model products include 3-hourly HYCOM native binary data and 
6-hourly z-level netCDF files that include water temperature, salinity, horizontal and vertical velocities, 
mixed layer depth, ocean heat content, the depth 20 and 26 degree C isotherm over the upper 350 m 
depth. 

Figure 13 compares the track and intensity forecast errors between HAFS-A and two operational TC 
prediction systems, HWRF and GFS. The results show that the track forecast errors are lower than HWRF 
and comparable with GFS, while intensity forecast errors are lower than HWRF after 48 h forecast lead 
time. The HAFS-A configuration was also run in quasi real time for Northeastern Pacific and 
Northwestern Pacific basins, the verification results are similar as that in the North Atlantic basin (not 
shown). The wind-pressure relationship produced by HAFS-A is also compared with that from HWRF in 
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figure 14, which clearly shows an improved wind-pressure relationship than HWRF and matches better 
with the best track data. 

Figure 13: Track (a) and intensity (b) forecast errors from the 2021 season for HWRF (purple), HAFS-A 
(cyan), and GFS(blue). 

Figure 14: Wind-pressure relationship from HAFS-A (cyan), HWRF (purple), and best track (black). 

b. HAFS-B experiment (HAFS v0.2B) 

HAFS-B was the global-nested version of HAFS, featuring a 3-km static nest covering the North Atlantic 
basin, with 2-way feedback with a simultaneously-running 13-km global domain. For the first time, the 
2021 version of HAFS-globalnest (HAFS-B) was coupled to an ocean model, with the nested domain 
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coupled to the HYCOM ocean model, similar to the configuration used in HAFS-A. Other configuration 
options that were unique to HAFS-B included the use of a modified version of the EDMF-TKE scheme to 
better match observational estimates of eddy diffusivity and mixing length (Gopalakrishnan et al. 2021, 
Hazelton et al. 2022) as well as the use of a less diffusive tracer advection scheme (Gao et al. 2021). 
Figure 15a shows that the track results from HAFS-B were generally similar to HAFS-A over the North 
Atlantic. The intensity errors were also similar to HAFS-A (Figure 15b), although HAFS-B had slightly 
larger errors at longer leads, mostly due to a high bias in Hurricane Larry (not shown). 

Figure 15: North Atlantic (a) mean track forecast errors and (b) mean absolute intensity errors from the 2021 
season for HAFS-A (dark green), HAFS-B (red), GFDL T-SHiELD (light blue), operational GFS (dark blue), 
operational HWRF (purple), and operational HMON (light green). 

Unlike HAFS-A, HAFS-B was run out to 7 days, and showed promising track performance in long-range 
track forecasts in 2021 (Figure 16a), with results comparable to or better than both the operational GFS 
and the GFDL T-SHiELD models. Another interesting aspect of HAFS-B was that the intensity biases 
from the East Pacific, on the global domain, were significantly better than the operational GFS and were 
similar to HWRF (Figure 16b). This indicates the importance of the high resolution forecasts of upstream 
disturbances (from the high resolution nest over the Atlantic) and motivates ongoing development 
towards an eventual multiple-moving-nest configuration in the global-nested version of HAFS. 

Figure 16: Eastern North Pacific (a) track forecast errors from HAFS-B (the global domain, red), operational 
GFS (blue), and GFDL T-SHiELD (cyan); and (b) intensity forecast bias from HAFS-B (the global domain, 
red), operational GFS (blue), and operational HWRF (purple). 



  

39 

c. HAFS-D experiment (HAFS-v0.2D) 

HAFS-D was an experiment which was designed to see the impact of data assimilation. This experiment 
used the configuration as HAFS-A, but included the following DA capabilities: 3-hourly FGAT, 3DEnVar 
with GDAS ensembles, assimilate all observations ingested by the operational HWRF/GFS/GDAS 
systems. Because of impressive intensity improvement from retrospective run with enhanced GOES-16 
AMVs assimilation (Figure 17), HAFS-D experiment included additional enhanced GOES-R AMVs. In 
real time, HAFS-D had comparable track skill to other HAFS and HWRF and good intensity skill after 36 
hrs (Figure 18). 

Figure 17: Track and intensity forecast errors from the experiments with (blue) and without (green) enhanced 
GOES-R AMV data assimilated. 

Figure 18: Track and intensity forecast errors from the 2021 season for HWRF (purple), HAFS-A (green), 
and HAFS-D (blue). 

https://HAFS-v0.2D


40 

d. HAFS-E experiment (HAFS v0.2E) 

HAFS-E was an ensemble experiment, which includes one unperturbed member (member 0) and 20 
perturbed ensemble members. The HAFS-E configuration was based on HAFS-A configuration, except 
for the following modification to save computer resources: i) lower resolution for the static nest (~6 km 
and L64), ii) no ocean coupling, and iii) Slightly larger physics calling steps. Details can be found in 
Table 2. Global Ensemble Forecast System (GEFS) output files are used as initial and lateral boundary 
conditions for HAFS-E to account for large-scale flow uncertainties. Three types model physics 
perturbations, Stochastically perturbed physics tendencies (SPPT), Stochastic kinetic energy backscatter 
(SKEB), Stochastically perturbed PBL humidity (SHUM), are included to account for model physics 
uncertainties. Two ensemble mean methods, all ensemble member average (HFMN) and sub-setting 
ensemble average (HS12), are used to represent ensemble track and intensity forecasts. The ensemble 
results are compared with three experiments, unperturbed lower resolution deterministic member 0, high 
resolution HAFS v0.2A, and its host model GEFS. Figure 19 shows the track and intensity forecast skill 
comparison. The following points can be clearly seen -( a) HAFS-A is more skillful than unperturbed 
ensemble members in terms of both track and intensity at all lead times, and has better intensity bias. (b) 
Equally-weighted HAFS-E ensemble-mean improved the track forecast by ~5% at all lead times, the 
intensity forecasts by > 10% after day-2 over its deterministic model (HF00). The subset of 
ensemble-mean further improved track/intensity forecasts, especially before day-2. HAFS ensemble mean 
track forecasts outperformed its host model GEFS in the short lead hours (< 60h). 

Figure 19: Track and intensity forecast skills from the 2021 season for unperturbed ensemble control (HF00, 
blue), HAFS-A (green), all member ensemble mean (HFMN, red), subset ensemble mean (HS12, purple), and 
HAFS-E host model GFSF (AEMN, orange). 

2.7. New Products, Tools, and Services at NHC 
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Figure 20: Examples of HFIP post processing and verification accomplishments in 2021: a) NHC director Ken 
Graham uses 3D graphics of aircraft Tail Doppler Radar during a public Facebook Live briefing ahead of the 
landfall of Hurricane Elsa; b) Experimental forecast using the “WTCM”-based wind speed probability 
model, which realistically highlights large differences between land and water points; c) output from a 
machine learning technique which aims to better quantify forecast uncertainty; d) Observations of eddy 
diffusivity vs wind speed at 500 m vs model output from the HAFS with a variety of parameterization 
schemes (from Gopalakrishnan et al. 2021). 

a. Operational and Real-Time Applications 

HFIP supported several efforts to improve operational and real-time products at the National Hurricane 
Center (NHC) in 2021. Updates were applied to the HFIP Corrected Consensus Approach (HCCA) 
model, the Statistical Hurricane Intensity Prediction Scheme (SHIPS), and the Logistic Growth Equation 
Model (LGEM), and an effort to migrate HCCA to permanent operations is underway. A major upgrade 
of the NWS operational probabilistic surge model was implemented in Spring 2021 to improve 
representation of the radius of maximum winds. The NHC and CIRA conducted evaluations of rapid 
intensification forecasts with large errors to improve the SHIPS-Rapid Intensification Index (SHIPS-RII) 
and also conducted an evaluation of the updated COAMPS-TC model. The NHC and CIRA are also 
testing new machine learning techniques to improve prediction of intensity, including rapid 
intensification. In addition, machine learning techniques are being developed to better quantify the 
uncertainty of forecasts (Figure 20c). 

Progress was also made toward improving public forecast products and warnings from the NHC and the 
National Weather Service (NWS). This includes updates to the wind speed probability model and the 
“WTCM” – a gridded representation of the NHC forecast used by the NWS to keep gridded forecasts 
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consistent between offices. One specific effort to improve the WTCM focused on the use of the NHC 
forecast wind radii, which are the maximum in a quadrant, but are converted to the average in a quadrant 
for the WTCM. HWRF surface wind forecasts from the past two years are being used to develop a more 
accurate conversion from maximum to average radii. An effort to merge the methodologies of the wind 
speed probability and WTCM models is also underway. This should improve the wind speed probabilities 
over land (Figure 20b). The improved wind speed probabilities will contribute to an effort to improve 
coastal and inland tropical storm and hurricane warnings using a new innovative collaboration process 
between NWS offices using the AWIPS-2 platform known as the Wind Hazard Recommender. A test of 
this new software was recently conducted in March 2022. HFIP also supported activities that will lead to 
improved public products. Development began on one of those in 2021, a probabilistic landfall intensity 
product that will meet a need in the emergency response community. Finally, NHC was able to use the 
result from a hurricane supplemental project focused on 3D visualization of model and aircraft for public 
briefings during the 2021 hurricane season. NHC director Ken Graham used the images during live 
briefings ahead of the landfall of Hurricane Elsa to highlight information about the storm and to 
demonstrate the work of the hurricane hunter aircraft (Figure 20a). 

b. Display and Diagnostic Activities 

As in past years, the HFIP community worked to improve model diagnostic and visualization techniques 
in 2021. Many of the tools will be used during the upcoming operational transition of HAFS by allowing 
model developers to evaluate the model beyond traditional track and intensity forecasts. NOAA’s 
Hurricane Research Division (HRD) developed visualization tools to evaluate parameterization schemes 
in HWRF and HAFS and compare the model output to observations (Figure 20d; Gopalrkrishnan et al. 
2021). The HRD also continued to directly compare model output with tail doppler data, investigated the 
impact of the Coyote unmanned aircraft observation platform on model initializations, and maintained a 
web viewer that hosted over 50 million real time graphical products from HFIP in 2021. Other 
visualization tools from ESRL and NCAR were supported and improved, including the brand new 
hfip.org, which debuted in 2021. Updates were applied to TC-specific web tools like the NCAR “NHC 
display” (products.hfip.org/nhc-display), which can assist both the NHC and the wider community with 
model evaluation and real-time forecasting. The NHC hopes to use the NCAR display tool to assist with 
post-storm analysis in the future as well. A new feature was added to the NCAR display tool in 2021 to 
allow multiple TCs to be displayed on the same plot to assist with post-storm analyses. 

2.8. Community Involvement 

Research to Operations (R2O) was one of the initial goals of the WRF program and is supported by HFIP 
in developing a repository for a community-based hurricane modeling system, which ensures the same 
code base can be used for research and in operations. During 2009-2016, both the EMC and the DTC 
worked to update the operational version of HWRF from version 2.0 to the community version of HWRF, 
version 3.9a. The 3.9a version made the operational model completely compatible with codes in 
community repositories, allowing researchers to access the operational codes. Hence, the improvements in 
HWRF, developed by the research community, were easily transferable into operations. DTC has played a 
significant role to help the HWRF community by conducting HWRF training sessions twice per year from 

https://products.hfip.org/nhc-display
https://hfip.org
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2010-2018, two of which were international. In addition, twelve Community Workshops on topics 
ranging from physics, observations, ensemble product development, satellite DA, to social science were 
conducted. In July 2018, the code version of the HWRF system v4.0a was available for the HWRF 
community. Since then DTC has continued to provide user support. Apart from US, there are about one 
thousand HWRF model users in about 200 countries5. User support was expanded with the Stream-2 
efforts, the significant one being the Basin-Scale HWRF. This research system can support any number of 
high-resolution movable nests centered on TCs in either the Atlantic or eastern North Pacific basin. 
Working with HRD, the DTC also supported the transition of this research version to the latest 
community repository, enabling users to access all advancements in the HWRF system including the 
end-to-end Basin-Scale configuration (excluding ocean coupling and data assimilation). A similar testbed 
activity is recommended for transitioning the proposed HAFS. 

2.9. NOAA Federally Funded Opportunity (FFO) 

The following tables (Table 3 and Table 4) provide the list of projects supported by HFIP during 
2018-2020 and 2020-2022. 

Table 3: HFIP Supported Projects from Awards Round V 2018-2020. 

PI Name PI Institution Project Title Status 

Agnes Lim 
University of 
Wisconsin (UWI) 

Colorado State 
University (CSU) 

Massachusetts 
Institute of 
Technology (MIT) 

Advanced DA Techniques 
for Satellite-Derived 
Atmospheric Motion 
Vectors from GOES 16/17 
in the HWRF 

Using Dynamically-Based 
Probabilistic Forecast 
Systems to Improve the 
NHC Wind Speed Products 

New Frameworks for 
Predicting Extreme Rapid 
Intensification 

New assimilation techniques 
developed for GOES-16/17 AMVs 
will be offered for transition to 
operations. 

A new version of the Monte Carlo 
wind speed probability model (MC 
model) that directly uses data from 
NCEP global and/or regional 
ensemble prediction systems was 
developed, validated, and is running 
in a semi-operational environment at 
CIRA. 

The development of Forecasts of 
hurricanes using large-ensemble 
output (FHLO) is completed. 

Andrea 
Schumacher 

Kerry 
Emanuel 

Ping Zhu 
Florida 
International 
University (FIU) 

Rapid Intensification 
Changes: Improving 
Sub-Grid Scale Model 

Static stability correction in the 
eyewall and rainbands, TKE 
turbulent mixing scheme combined 

5 https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HWRF 

https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HWRF
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PI Name Project Title Status 

Parameterization and 
Microphysical-Dynamical 
Interaction 

with stability correction have been 
implemented in both HWRF and 
HAFS. 

Ryan Torn SUNY Albany 

Evaluating Initial Condition 
Perturbation Methods in the 
HWRF Ensemble 
Prediction System 

The milestone of validating 
probabilistic wind and precipitation 
forecasts from ensemble prediction 
systems is at RL-6; validating 
quantitative and probabilistic 
ePHRaM forecast is RL-5; and the 
ensemble-based precipitation 
sensitivity work is at RL-5, with the 
hope of advancing it toward RL-6. 

Ting-Chi 
Wu 

Colorado State 
University (CSU) 

Enabling Cloud Condensate 
Cycling for All-Sky 
Radiance Assimilation in 
HWRF 

A new development branch of GSI 
named icda_dev_cira was created and 
implemented code 
modifications to enable cloud 
condensate cycling via all-sky 
radiance assimilation in HWRF. Then 
a routine branch merge was 
conducted to ensure that the 
icda_dev_cira branch syncs with the 
latest change contained in the HWRF 
branch of GSI, which is used by the 
operational HWRF. 

PI Institution 

Table 4: HFIP Supported Projects from Round VI 2020-2022. 

PI Name 
PI 
Institution 

Project Title Status 

Alan 
Brammer 

CSU-CIRA 
Extending the Tropical Cyclone 
Genesis Index to Global 
Ensemble Forecasts 

The project has implemented the 
ensemble based genesis guidance to run 
on invests in all basins in real time. 

Enrique 
Curchitser 

Rutgers 
Developing Regional Ocean 
Modeling Capabilities with 
MOM6 for use in the UFS 

The project has made progress on 
targeted regional MOM6 domains for 
HAFS application with improved 
surface and boundary conditions. 

Ryan Torn 
SUNY 
Albany 

Application of Innovation 
Statistics to Diagnose Biases in 
the HAFS System 

The project has made substantial 
progress in the development of 
storm-centric innovation biases and 
identifying the relationship between 
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PI Name 
PI 
Institution 

Project Title Status 

innovation biases between different 
vertical and horizontal locations using 
advanced statistical approaches. 

2.10. Socio-economic Aspects of HFIP 

The section 104 of the Weather Act 2017, as well as the hurricane supplemental funding provided NOAA 
with a unique and important opportunity to integrate the social, behavioral and economic sciences into 
NOAA’s tropical products and services, as well as incorporate risk communication research into the 
design and communication of its products. To accomplish these goals, the Office of Oceanic and 
Atmospheric Research (OAR)’s Weather Program Office (WPO) worked side by side with the National 
Weather Service (NWS) to identify relevant operational challenges, develop project descriptions, and fund 
four social and behavioral science projects: 

i. There’s a Chance of What? Assessing Numeracy Skills of Forecasters, Partners, and Publics 
to Improve Tropical Cyclone Product Uncertainty, IDSS, and Training. The goal of this project 
was to examine how end-users, such as forecasters, emergency managers, and the public interpret 
and comprehend probabilistic tropical cyclone information. This was explored through the use of a 
concept known as numeracy, or one’s ability to use and understand numerical information. 

ii. Minding the Gap: Modernizing the Tropical Cyclone Product Suite by Evaluating NWS 
Partner Information Needs. By interviewing and surveying NWS partners, specifically 
emergency managers and broadcast meteorologists, this project was designed to help NWS 
prioritize their efforts to modernize their tropical cyclone product suite and identify gaps needed to 
enhance NWS partner decision-making. 

iii. Wait, that Forecast Changed? Assessing How Publics Consume and Process Changing 
Tropical Cyclone Forecasts Over Time. This project explored how various publics consume and 
process changing tropical cyclone forecasts over time. To do this, this project developed a social 
science methodology to deploy surveys before, during, and after tropical cyclone events to measure 
the public’s information-seeking behavior, risk reception, and protective action responses in 
real-time. 

iv. Optimizing Tropical Cyclone Information: An National Hurricane Center Web User 
Experience Study from a Public Perspective. Using a combination of user-centered design and 
usability study approaches, the goal of this project was to evaluate the usability of National 
Hurricane Center’s (NHC) webpage and help NOAA identify various design opportunities to 
modernize the NHC’s web presence. 

These four social and behavioral science research projects were developed with a purposeful, 
complementary design (Figure 21). Instead of creating individual projects that would offer discrete 
findings and recommendations, this complementary approach created an opportunity to build a collective 
body of research whereby the cross-cutting findings from each project could build on one another to 
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provide more generalizable findings about the suite of tropical cyclone products and services. Similarly, 
the differences among each of the four projects was also strongly considered. The OAR-NWS social 
science team wanted to intentionally create projects that differed in the audience examined (i.e., general 
public, emergency managers, broadcast meteorologists, and/or forecasters), their theoretical focus, and 
their application to also provide unique findings and research-guided recommendations that addressed 
specific operational gaps or needs. Not only did this result in four projects that incorporated risk 
communication research in a meaningful way to empirically examine the NWS tropical cyclone product 
suite, it also created an opportunity for the four project teams to collaborate with one another as a research 
cohort. 

Figure 21: The purposeful, complementary design behind the projects. 

After each project team was established, the OAR-NWS social science team brought the project teams 
together as a cohort early in the research process to nurture cross-learning, collaboration, and rapport 
development. These collaborations were first developed through a virtual Tropical Socio-Econ Virtual 
Workshop in June 2020. At this workshop, each project team provided an overview of their project and, 
after hearing from all four projects, offered suggestions on how they envisioned productively 
collaborating with other project teams within the cohort. These collaborative conversations with both the 
research teams and the OAR-NWS social science team continued throughout the project period. As the 
projects progressed and began collating early research findings, the cohort met more frequently to 
socialize their research findings, determine whether results from other research teams resonated with 
them, and if so, identify cross-cutting takeaways and findings across two or more projects. Although we 
are still waiting for all of the final reports, these engagements with the project teams throughout the award 
period provided the OAR-NWS social science team the unique opportunity to begin triangulating research 
findings across all four social and behavioral science projects. 
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Using conference presentations, draft reports, and some final reports, the OAR-NWS social science team 
began triangulating the preliminary findings from each project to identify high-level themes or concepts 
that were common among the four projects (Figure 22). Similar to the concept of triangulation in a 
navigational sense, triangulation can also be used in the context of social science research by using more 
than one method or approach to investigate a topic or research question. Because the OAR-NWS social 
science team developed the four projects with a purposeful, complementary design, it was possible to 
triangulate the research findings across all four projects. According to Heale and Forbes (2013)6, “the 
combination of findings from two or more rigorous [social science] approaches provides a more 
comprehensive picture of the results than either approach could [provide] alone.” The next few 
paragraphs will provide some big themes and preliminary takeaways from the four social and behavioral 
science hurricane supplemental projects. However, please keep in mind that these findings are still 
preliminary and that our triangulation efforts are still ongoing. These efforts will continue until we receive 
all four final reports near the end of FY22. 

Figure 22: Ongoing triangulation efforts to find similarities across projects. 

Broadly speaking, the biggest takeaway from the four projects is that broadcast meteorologists, 
emergency managers, and members of the public find NWS’ tropical cyclone products and services useful 
and important. However, thanks to the purposeful and complementary nature of the four projects, each 
project also provides unique insight on how NWS products and services could be further enhanced to 
improve end-user usability, understanding, and decision-making. As a reminder, the big themes and 
takeaways are still preliminary and our triangulation efforts are still ongoing. Across all four projects, 

6 Heale R, and D. Forbes, 2013: Understanding triangulation in research. Evidence-Based Nursing, 16(4), pg. 98; 
doi:https://doi.org/10.1136/eb-2013-101494 

https://doi:https://doi.org/10.1136/eb-2013-101494
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there are eight high level themes that emerge. These themes are ordered based on how often they appeared 
across the four projects. As such, the first theme represents the most consistent findings compared to the 
final theme, which does not emerge as often in the presentations and reports. 

● Identify ways to localize and personalize information for end-users. Broadcast meteorologists, 
emergency managers, and members of the public have a strong desire for NWS tropical cyclone 
products and services to be more specific and local to their area. End users, for example, want to be 
able to find themselves on various tropical cyclone graphical products. They want to be able to type 
in their zip code or zoom into their location to find additional information about their local area. 

● End users search for different types of tropical cyclone information during different phases in 
the lifecycle of a tropical cyclone threat. All four projects provide specific information on the 
information-seeking tendencies of broadcast meteorologists, emergency managers, and members of 
the public. This may have implications on product development, refinement, and/or operational 
changes to the issuance of products/services to more clearly align with end user needs. 

● Timing is important for critical decision making, as as a result, the timing of when forecasts 
are issued is important too. Timing plays an interesting and multifaceted role in these project 
findings. Broadcast meteorologists, emergency managers, and members of the public are all 
interested in the timing of the arrival of various tropical cyclone impacts. Timing was also prevalent 
in terms of partner's decision-making timelines. Broadcast meteorologists, for example, explained 
that they do not have much time to decipher the latest forecast information and make changes to their 
in-studio graphics before going live on-air. 

● Forecast uncertainty is important to communicate, but is not always communicated well. 
Broadcast meteorologists and emergency managers believe forecast uncertainty is one of the most 
important pieces of information to communicate early in a tropical cyclone event. However, not all 
tropical cyclone products or services are effective at reaching low-numerate populations. Therefore, 
best practices and research-guided recommendations from previous research should be used to 
improve the communication of probabilistic and/or uncertainty information. 

● Graphical products are important for risk communication, but sometimes need to improve 
their depiction of risk and/or uncertainty. Several projects highlighted the value of NWS 
graphical products for tropical cyclone risk communication. However, not all graphical products do 
this effectively. Findings from these projects suggested that graphical products are more valuable 
when meteorologists co-produce or co-develop products and services alongside partners and 
end-users. Co-development ensures that all individuals are able to access, understand, and use these 
products when making decisions. 

● There is a misperception among forecasters and partners that members of the public do not 
understand uncertainty information. Instead of providing numerical information when 
communicating uncertainty information, these projects revealed that forecasters and partners often 
use vague words and phrases. This likely has a chain reaction, such that this watered-down 
uncertainty information does not offer beneficial information to members of the public. Because 
members of the public do not find this information helpful when making decisions, this likely fuels 
the perception that members of the public do not understand uncertainty information. 
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● There is a misperception that emergency managers are as highly numerate as weather 
forecasters. Although emergency managers are specialized users of weather information, it does not 
mean that they are as highly numerate as many weather forecasters. Findings from these projects 
revealed that emergency managers are generally more numerate compared to members of the public, 
but not to the level of weather forecasters. In fact, emergency managers’ average numeracy ratings 
are closer to the ratings for members of the public. 

● NWS needs to increase the accessibility of tropical cyclone products and services. The 
OAR-NWS social science team sees value in exploring the findings through an accessibility lens, 
especially given the current administration's focus on Diversity, Equity, Inclusion, and Accessibility. 
In particular, the NHC Website project offers various website and graphical design best practices to 
improve accessibility (e.g., Screen Reader Capability). However, the team also sees value in thinking 
about accessibility in terms of low-numerate individuals and ensuring those individuals have more 
access to tropical cyclone products and services. 

Although our triangulation efforts are still ongoing, the OAR-NWS social science team, in collaboration 
with the NWS Tropical Roadmap Team, started thinking about the process for translating social science 
findings from the four projects for possible transition into operations. While translating research outputs 
into operations is a priority, it is important to first evaluate the social science findings’ readiness for 
transition from both a research (i.e., generalizability) and operational perspective (i.e., operational 
viability or feasibility).These evaluations will determine whether a research output is ready for transition 
to operations, or whether additional physical and/or social science research and development (R&D) may 
be needed prior to implementation. In fact, some of the research findings that require more R&D are 
especially interesting to the OAR-NWS social science team. These social science projects, for example, 
point to physical science capabilities that end-users want, but are not yet operationally feasible. Therefore, 
in addition to providing research-guided recommendations on how to improve the tropical cyclone 
product suite, these projects also exemplify the interconnectedness of social and physical science R&D 
and how one can inform the other—and vice versa. In the interim, the OAR-NWS social science team 
plans to continue translating findings from the four social and behavioral sciences into relevant R&D 
needs and applications. We look forward to continuing our ongoing collaboration with the NWS Tropical 
Roadmap Team, as we explore these potential applications together. 

2.11. HFIP State-of-the-art and HAFS developments 

In 2009, NOAA established the 10-year HFIP to accelerate the improvement of forecasts and warnings of 
tropical cyclones and to enhance mitigation and preparedness by increasing confidence in those forecasts. 
Regional models with moving nests were created especially to address the problem of intensity changes in 
TCs. Global models cannot currently address the intensity forecast problem because horizontal resolutions 
are too coarse, limited by operational high performance computing (HPC) resources, to capture the 
hurricane eyewall and the inner-core structure of the hurricanes critical for predicting intensity changes 
(section 4). 

Sustained HFIP investments in research and development (R&D) and HPC led to the creation and 
transitions of the high-resolution HWRF system from research to operations (R2O). This system is now 
paving the way around the globe, and removing the initial roadblocks associated with predicting intensity 
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changes with the dynamical prediction, which was nearly non-existent until 2009 (Figure 2b). HWRF has 
improved by at least 15-30% since 2011 over the Atlantic basin (Figure 3b). Since 2014, HWRF has run 
operationally in all global basins and is used by forecasters for reliable intensity guidance worldwide. 
Significant improvements to the HWRF system are attributed to a number of major changes since 2012, 
including a new, higher- resolution moving nest capable of better resolving eyewall convection and scale 
interactions, improved planetary boundary layer and turbulence physics, an improved nest motion 
algorithm, and, above all, yearly upgrades, systematic testing and evaluation (T&E) that are based not 
only on single simulations and idealized case studies but on several seasons of testing. 

Figure 23: Evolution of inner-core data assimilation techniques under HFIP. 

It should be noted that because high-resolution, storm-following nests are central to hurricane NWP, data 
assimilation (DA) requirements for hurricanes are uniquely different from other weather model 
applications. Apart from NWP model developments, some significant progress has also been made with 
inner core DA techniques, which not only demonstrated positive improvements to forecasts (Figure 3) 
but also will be foundational for next-generation hurricane models, both in terms of developments as well 
as in building a capacity. Figure 23 shows the progress associated with the developments of multiscale 
data assimilation techniques under HFIP. 

A more advanced version of HWRF, called the Basin-Scale HWRF, an unparalleled capacity for 
addressing NOAA’s next generation forecasting needs within the unified forecasting system was created 
under HFIP. The Ocean-Coupled Basin-Scale HWRF, which was run in Stream 2 from 2013-2020, 
demonstrated how a basin wide domain with multiple-moving nests tracking several storms 
simultaneously in the North Atlantic and eastern North Pacific basins could improve storm-storm and 
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land-storm interactions without using uniform high-resolution domain, hence providing an operational 
solution to further advance TC forecasting. Transitions of this multiple-moving-nested HWRF to 
next-generation global and regional modeling systems within the Unified Forecast System is underway 
and is expected to further expand the hurricane prediction capacity in NOAA. 

These developments and T&E would not be possible without the support of HFIP JET-HPC in Boulder, 
which was dedicated for Hurricane R2O early in the program. HFIP has also built a capacity of model 
users, developers and hurricane scientists both within NOAA and academia to tackle the next-generation 
hurricane forecast improvements. It should be emphasized that nearly all major HWRF developments and 
R2O efforts, including the first high-resolution version of HWRF, were supported and tested in a real-time 
demonstration mode (i.e., HFIP Stream 2 or HREx) during the hurricane season and then transitioned to 
operations. In addition, there have been five Federally Funded Opportunities over the last 10 years for 
HFIP, awarding 40 grants to University PIs, totaling $10.5M. All these HFIP efforts have led to hundreds 
of publications related to HWRF within that period7. However, it should be noted that as of 2021, we are 
only about half way to the HFIP goals set over a decade ago. 

HFIP’s approach is designed to accelerate the implementation of promising technologies and techniques 
from the research community into operations. That approach has resulted in ~20% improvement of track 
forecast skill (Figure 3a), and more than 15-30% improvement of intensity forecast skill (Figure 3b) for 
tropical cyclone forecasts in the North Atlantic basin between 2011 and 2020. Importantly, 2020 HWRF 
intensity skill scores were 10-30% better than climatology and persistence at all forecast lead times 
(Figure 3b). Yet, as shown in Figure 3b, these improvements in intensity predictions only resulted in 
reaching closer to the 5-year-goals in 10 years of time. Part of the reason may be associated with the lack 
of progress with dynamical guidance until 2012. In fact, until 2011 intensity predictions lagged even the 
baseline (Figure 3b) primarily set on statistical-dynamical models (SHIPS and LGEM). In addition, 
predicting RI continues to be a challenge. In terms of track predictions, we have only reached closer to the 
original HFIP baseline (Figure 3a). It appears that global models with two-way interactive high-resolution 
nests may be the ultimate solution for both track and intensity predictions (Figures 15 and 16). Moreover, 
our needs for additional forecast improvements and products have grown since 2009. 

Key to HFIP's success are six strategies outlined below: 
1. Development of HAFS (DA, Obs, Development) 
2. Probabilistic Guidance (goal: is to increase forecast lead time) 
3. Improved Risk Communication 
4. High-Performance Computing (10-15 million hours per month) 
5. Transitions to testbeds, NOAA’s transition plan 
6. Support to the science community 

Supported by the NOAA Hurricane Supplemental projects under the Bipartisan Budget Act of 2018 
(P.L.115-123), accelerated developments of HAFS are ongoing. Those developments include 
high-resolution, telescoping two-way interactive moving nests, model physics to support high-resolution 
prediction, hurricane inner core data assimilation techniques, regional ensembles and products to support 
probabilistic forecasts. All developments are being seamlessly merged with the UFS developments 
(Section 8). 

7 http://hfip.org/documents 

http://hfip.org/documents
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HFIP Real-time Experiment (HREx; formerly known as Stream 2) is a project undertaken during the 
hurricane season to demonstrate that the application of advanced science, technology, and increased 
computing will lead to the desired increase in accuracy, and other improvements in forecast model 
performance since 2012 as laid out in the HFIP strategic plan. New and innovative Numerical Weather 
Prediction and data assimilation techniques, model configurations and products must be at least at RL4 or 
higher to be selected for obtaining HFIP computational resources on the NOAA R&D machines, JET and 
Orion, following a call for proposal in early April. The HFIP real-time experiments start officially on 
August 1 and end on October 31. Progress of these real-time runs are evaluated after each season to 
identify techniques that appear particularly promising to operational forecasters and/or modelers. These 
potential advances are then blended into operational implementation plans through subsequent model 
upgrades, or further developed outside of operations with subsequent testing. Starting in the 2019 
hurricane season, experimental versions of the UFS-based HAFS were introduced to the suite. 

Four configurations of the HAFS model were run as part of the 2021 HFIP Real-time Experiment (HREx). 
They were (i) the ocean coupled, high resolution regional Limited Area Model (LAM) (HAFS v0.2A); (ii) 
global model with a high resolution nest (HAFS v0.2B); (iii) regional HAFS with data assimilation (DA) 
(HAFS v0.2D); and (iv) HAFS ensembles with 21 members (HAFS v0.2E). The results demonstrated that 
HAFS configurations have more skillful track forecasts than HWRF in the North Atlantic Basin, except for 
HAFS-E track forecasts which lagged behind HWRF after day-3. The intensity skills are mostly improved 
in all HAFS configurations yet lagged behind HWRF at the early lead times, but showed some skills after 
day-2. We believe further improvements may be possible with HAFS (section 9). 

2.12. Future direction of HFIP 

NOAA recognizes the broad scope of the scientific challenges associated with understanding and 
predicting hurricanes. Addressing these challenges and improving the forecasts of TC track and intensity 
will involve significant community interaction and access to the necessary expertise. The success of the 
next phase of HFIP in reaching the goals requires sufficient funding to support the activities outlined here. 
NOAA made significant progress toward achieving HFIP goals in the first 5-6 years of the program. 
Starting in FY 2015, however, NOAA dedicated fewer resources to HFIP due to competing budget 
priorities across the agency. This slowed the rate of progress towards HFIP goals (e.g. Tropical Cyclone 
Intensity and RI research) by restricting the capacity to test and evaluate new research and delaying 
transition of potential new analysis and forecast applications into operations. The lower funding levels 
also hindered engagement with the academic community that dramatically slowed model improvements. 

With the passage of the Weather Act by Congress in 2017, NOAA is now dedicated to reinvigorating 
HFIP to move towards meeting the requirements of the Act. Resource requirements are still being 
considered within the agency and will be reflected in NOAA’s future year budget requests. The FY18 
Appropriations remained constant with the 2015 funding levels and does not address how to support the 
changes in HFIP priorities directed by the Section 104 of the Weather Act, which requires addressing new 
strategies, such as risk communication and improving probabilistic guidance. The original HFIP focused 
on model developments, in particular HWRF and building a capacity to accelerate the model development 
(HPC upgrades, DTC support for the model developers, EMC & NHC support, and accelerated R2O). 
The Bipartisan Budget Act of 2018 (P.L.115-123) appropriated funding to improve weather forecasting, 
hurricane intensity forecasting and flood forecasting and mitigation capabilities to support HAFS 



53 

developments under HFIP from 2019-2022 and 2022 Disaster Relief Supplemental Act HURR1 project 
for further advancements in HAFS until 2024. This provided a firm resource for the development of 
HAFS and the next phase of HFIP, but the challenge remains to ensure sufficient funding is dedicated to 
reach HFIP goals beyond 2022. 

3. Chapter III: HFIP in 2022 
3.1. Introduction 

This chapter summarizes the activities and results of the Hurricane Forecast Improvement Program 
(HFIP) that occurred in 2022. The major focus of this report is the development of the Hurricane 
Analysis and Forecast System (HAFS) within the Unified Forecast System (UFS) and its first operational 
implementation. As 2022 marks five years since the Weather Act of 2017 established new 5-year goals 
for HFIP, we will pay particular attention to progress HFIP has made in meeting these goals. 

Much recent progress in tropical cyclone forecasting can be attributed to the success of HFIP over the last 
15 years. In Section 3.2, we will provide more detailed background on the HFIP program and summarize 
the success of HFIP since its inception, highlighting the establishment of new goals as previous goals 
have been met. Section 3.3, we will summarize the performance of the National Hurricane Center (NHC) 
and available real-time forecast guidance, with particular emphasis on the HWRF and HMON mesoscale 
models that were developed primarily under the HFIP program. In Section 3.4, we will discuss the 
development of the state-of-the-science next generation of mesoscale models supported by HFIP: 
HAFS-A and HAFS-B. Lastly, in Section 3.5, we will discuss future objectives and provide concluding 
remarks. 

3.2. Background and Successes of the HFIP Program 

Following the wake of the unfathomable damage from hurricanes in 2004-2005, including Hurricanes 
Charley (2004), Katrina (2005), Rita (2005), and Wilma (2005), the Hurricane Forecast Improvement 
Program (HFIP) was established by the NOAA Executive Council on May 10, 2007, outlining a blueprint 
for the NWS and OAR to collaborate on hurricane forecast improvements. The vision for HFIP in 2007 
was to organize the hurricane community to work together to drastically improve numerical forecast 
models and guidance for the NWS/National Hurricane Center in 5-10 years. HFIP established 
quantifiable goals, including: (1) reducing track and intensity forecast guidance errors by 20% within 5 
years, and 50% within 10 years; (2) extending forecast guidance to 7 days, with skill comparable to that 
of 5-day forecasts in 2007; (3) increasing the probability of detection for rapid intensification to 90% at 
day 1, and 60% at day 5; and (4) improving storm surge prediction. 

HFIP has been a quantifiable success. Since the inception of HFIP, model hurricane track errors have 
been reduced by 50%, intensity forecast errors have been reduced by 56%, and intensity errors during 
rapid intensification (RI) have been reduced by 47%. With the support of HFIP, the Hurricane Weather 
Research and Forecasting (HWRF) model became the top deterministic intensity guidance used 
worldwide in tropical cyclone prediction. In response to the Weather Act of 2017, a new set of HFIP 
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goals were established in order to maintain ongoing research to improve hurricane forecasting. This new 
set of goals included: (1) reducing track and intensity forecast guidance errors further than the 2007 goal, 
by an additional 50%, including for rapid intensification; (2) improve forecasts and guidance for storm 
surge and other storm-induced hazards; and (3) incorporate risk communication research to create more 
effective watch and warning products. 

HFIP has been a cross-cutting effort across NOAA. NWS/OSTI leads a collaborative effort to carry out 
the goals of HFIP, including, but not limited to, the invaluable collaboration between NWS/EMC for 
transitioning model innovations into operations, NWS/NHC for operational forecasts and products, and 
OAR/HRD for research and development. More recently, hurricane modeling has begun to look to the 
future, with a forthcoming transition to the Unified Forecast System (UFS) through development of the 
Hurricane Analysis and Forecast System (HAFS); expected to become operational in 2023. 

Model track forecast errors are closing the gap to meet the original 2007 HFIP 10-year and 2017 Weather 
Act 5-yr error reduction goals (Figure 24). Further development of the HAFS model is needed to close 
the gaps between observed track error and the original goals, as well as meet the Weather Act 10-year 
goal by 2027. The results have been even more impressive for intensity. Model track error has met the 
original 10-year goal, and even exceeded the Weather Act 5-year goal (Figure 25). The Weather Act 
10-year goal for intensity is ambitious, and further development of HAFS will be needed to meet this goal 
by 2027. 

Figure 24: Observed track forecast error (nmi; bar graph) at 48-h lead time, pre-HFIP in 2007, when HFIP 
goals reached the year 10 mark in 2017, and the Weather Act goals reached year 5 in 2022, compared to the 
original 10-year goal, the Weather Act 5-year goal, and the Weather Act 10-year goal (black, red, and green 
stars, respectively). 
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Figure 25: As in Figure 24, but for intensity error (kt). 

The original HFIP 2007 goals pertained to the probability of detection of rapid intensification, as opposed 
to a specific improvement in error when RI occurs. Quantifiable 5-year and 10-year goals in terms of the 
reduction in intensity forecast error, conditional on RI being observed, were established in the Weather 
Act or 2017. Model-predicted intensity errors during periods of rapid intensification are currently 
approaching the Weather Act 5-year goal (Figure 26). As was the case for the HFIP track error 
objectives, further development of HAFS is needed to close the Weather Act 5-year goal gap and meet the 
Weather Act 10-year goal by 2027. 
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Figure 26: Observed intensity forecast error (kt; bar graph) at 48-h lead time, conditional upon rapid 
intensity being observed. Bars correspond to pre-HFIP in 2007, when HFIP goals reached the year 10 mark 
in 2017, and the Weather Act goals reached year 5 in 2022, compared to the Weather Act 5-year goal, and the 
Weather Act 10-year goal (red and green stars, respectively). 

Aligned with the new 2017 Weather Act goals, HFIP is supporting a series of critical intermediary steps, 
including working towards having real-time (but not yet operational) predictive guidance from a HAFS 
ensemble by 2023, improved pre-formation disturbance guidance by 2026, and multiple moving nest 
capability in HAFS for all tropical ocean basins by 2027. Ongoing challenges, such as the recent 
Hurricane Ian disaster, highlight the need for continuing HFIP. In addition to focusing on the 
development of the next-generation HAFS probabilistic and ensemble systems, the future of HFIP also 
seeks to advance the social sciences component of risk communication in hurricane science. Critical 
advancements towards HFIP strategic goals related to risk communication are being made, including the 
operational implementation of Tropical Storm Force Winds - Time of Arrival product. HFIP will achieve 
Social Behavioral and Economic Science (SBES) goals to further improve risk communication through 
the tropical product suite by integrating research outcomes into new and existing internal and public 
facing tropical products and services. Recent work on the development of HAFS ensemble looks to 
address continued challenges in communicating probabilistic information to forecasters, emergency 
managers, and the public. 

3.3. Operational Highlights from the 2022 Hurricane Season 

The 2022 Atlantic hurricane season was an average, but destructive, season, with 14 named storms, 8 
hurricanes, and 2 major hurricanes. Hurricane Fiona was a category 4 hurricane that caused significant 
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damage to Puerto Rico, the Dominican Republic, and Nova Scotia. Hurricane Ian was a category 5 
hurricane at its peak, that slammed into southwest Florida at category 4 intensity, causing widespread 
damage. The 2022 Eastern Pacific hurricane season was active, with 19 named storms, 10 hurricanes, and 
4 major hurricanes. Seven Eastern Pacific tropical cyclones made landfall, including two which crossed 
over from the Atlantic basin. There were 4 RI events from 3 tropical cyclones in the Atlantic (Danielle, 
Martin, and Ian), and 8 RI events in the Eastern Pacific (Agatha, Blas, Darby, Estelle, Howard, Kay, 
Orlene, Roslyn). 

Following the theme from 2021, the 2022 season broke records for NHC forecast accuracy. The 2022 
season was NHC’s best ever for track forecast accuracy from 36-120 h, and for intensity forecast accuracy 
from 12-60 h in the Atlantic. Higher intensity forecast errors from 72-120 h were primarily due to 
difficulty in predicting Hurricane Fiona. The Atlantic hurricane season was below average in terms of the 
number of forecasts issued: 234 forecasts versus the mean of 320. In the Eastern Pacific, no records were 
set for track forecast accuracy, but records were set for short-term intensity forecast accuracy at 12 and 24 
h. The number of forecasts issued in the Eastern Pacific, 325, was very close to the long-term mean. 

NHC’s long-term (since 1990) statistics show that track forecasts in the Atlantic continue to improve at all 
forecast lead times, from 24-120 h. There was some concern around 2017-18 that forecast track errors 
were no longer decreasing meaningfully, but meaningful further decreases in track error since then have 
demonstrated that there has been opportunity for additional improvement. In 2022, as is often the case, 
blended consensus aids were the top performing track guidance (Figure 27a) in the Atlantic in 2022. 
Amongst individual models, the most accurate forecast varied by forecast lead time. GFSI was best short 
term model through 24 h, the HFIP-supported HMNI was the most accurate model from 48-72 h, and the 
Navy’s CTCI was the top model from 96-120 h. HWFI lagged HMNI again this year for track, but again 
bested CMCI and NVGI. 

Figure 27: (a) Track and (b) intensity forecast skill (% improvement) of real-time operational forecast 
guidance relative to a climatological and statistical model baseline (CLIPER5 for track, SHIFOR5 for 
intensity) for the 2022 Atlantic hurricane season, as a function of forecast lead-time. Numbers immediately 
above the x-axis indicate the number of cases included at each forecast lead time. 
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Intensity error is typically associated with a greater season-to-season variance than track error. As such, 
the long-term trends in NHC official intensity forecast error is associated with much larger upward and 
downward swings than for track. In 2022, Atlantic intensity forecast errors dropped from 24-72 h with a 
strong downward long-term trend, but errors spiked up at 96 and 120 h. It is clear that TC intensity at 
days 4 and 5 remains an operational forecasting challenge. As such, improving the intensity forecast, and 
also understanding the forecast uncertainty at these timeframes, remains one of the top goals of HFIP. 
NHC official Atlantic intensity forecast errors in 2022 were below 5-yr means through 72 h, but above 
means at 96 and 120 h. OCD5 errors show that 72-120 h forecasts were more challenging than average. 
Amongst real-time intensity guidance, blended consensus aids performed best overall, as per usual, but 
HWFI and HMNI performed particularly strong in 2022 for intensity (Figure 27b). In fact, HWFI 
outperformed most blended intensity guidance from 60-120 h, and outperformed all model blends at 72 h, 
an extremely impressive feat for a deterministic mesoscale model. HMNI also performed very well in 
2022, and was the best individual model for short-range intensity forecasts, namely from 24-48 h. 

Examination of the long-term gains in track forecast accuracy in the Eastern Pacific are very impressive, 
with a 67% reduction in 48-h track error since 1990, and a 50% reduction in 120-h track error since 2001. 
However, unlike in the Atlantic, track error in the Eastern Pacific has not reduced meaningfully at any 
lead time since 2017. The blended consensus aids were the top guidance in terms of track forecast 
performance in the Eastern Pacific in 2022, followed by EMXI, the interpolated ECMWF deterministic 
model (Figure 28a). GFSI, AEMI, and CTCI were the next best models for track, while HMNI and 
HWFI performed closer to the middle of the pack, similar to their performance in 2021. One hypothesis 
for the difference in performance of HWRF between the Atlantic and Eastern Pacific basins is the fact 
that much of the forecast model improvements since 2017 have been made to the data assimilation 
system, particularly in terms of the assimilation of P-3 tail Doppler radar, flight-level winds, and 
dropsondes. These in-situ supplemental observations are frequently available in the Atlantic, but rarely 
available in the Eastern Pacific, due to comparative concerns about landfall, societal impacts, etc. As 
such, it is possible that improvements to the DA that have allowed for the assimilation of supplemental 
observations in the Atlantic have not meaningfully benefited the Eastern Pacific. 

Figure 28: As in Figure 27, but for the Eastern Pacific. 
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Long-term trends in Eastern Pacific intensity forecast error show slow, but not steady, improvement. 
Errors decreased at all lead times in 2022 relative to 2021, which was a particularly challenging year 
amongst recent seasons for intensity forecasts in this basin. The blended consensus aids provided the best 
intensity guidance overall in the Eastern Pacific in 2022, followed closely by HWFI and HMNI (Figure 
28b). In fact, HMNI bested all other models at 60 and 72 h, while HWFI was the top model at 96 h, even 
outperforming the blended consensus products. As is often the case, global models such as GFSI and 
EMXI underperformed for intensity. 

Since rapid intensification is inherently a low-probability event by definition (a 30-kt intensification in 
24-h corresponds to the 95% percentile of intensity change), statistical verification of RI can be somewhat 
of a challenge in a single basin over a single season due to sample size. As such, RI is often verified over 
multiple basins and/or multiple seasons. Here we examine the combined Atlantic and East Pacific 
intensity errors from 2022 as a function of lead time, conditional upon RI either being observed or in the 
forecast. The resulting multi-basin sample size is 52 cases at 24 hours and 15 cases at 120 hours. As 
demonstrated in Figure 29a, forecast errors are well below the 2007 “baseline”. By further combining 
2021 and 2022, the sample increases to 111 cases at 24 hours, and 20 cases at 120 hours (Figure 29b). In 
the two-year sample, RI forecast errors are again well below the “baseline” from 2007, and match up 
quite well with the “target”, or the 5-year goals from the Weather Act of 2017. Overall, a steady 
reduction in RI forecast errors continues to be quite promising, and in-line with preestablished HFIP 
goals. 

Figure 29: Intensity forecast error (kt) as a function of lead time (h), conditional upon RI (30-kt or more 
intensification in 24 hours) either being observed or forecast, for the combined Atlantic and East Pacific 
basins, from (a) 2022, and (b) 2021-2022. Included are the 2007 HFIP baseline (black dashed), the consensus 
forecast error (red), and the 2017 Weather Act 5-year goal (green dashed). 

3.4. Development of the Next Generation of Mesoscale Models: HAFS-A 
and HAFS-B 
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a. HAFS Overview 

One of the greatest challenges, and recent successes, of the HFIP program has been the development of 
the next-generation HAFS modeling system, which utilizes the FV3 core streamlining HAFS with the 
GFS as part of the Unified Modeling System (UFS). The focus of 2022 was to demonstrate HAFS as 
being ready for real-time operational implementation in the 2023 hurricane season, while also 
demonstrating skill on par with or exceeding the skill of the operational HWRF model in multi-year 
retrospective test samples. As demonstrated in 2021, two different variants of HAFS have shown 
complementary skill in a variety of differing forecast scenarios. These two variants were referred to as 
HAFS-v0.3A and HAFS-v0.3S during real-time testing and evaluation, and were subsequently renamed 
HAFS-A and HAFS-B, respectively. A comparison between the HAFS-v0.3A and HAFS-v0.3AS 
configurations run experimentally in 2022 appears in Table 5. Note that differences in physics options 
and vortex initialization (VI) provide model diversity, which has been found to be beneficial for helping 
understand forecast uncertainty. In this section, we will define the various HAFS subvariants, and 
summarize the performance of HAFS in comparison with the current operational HWRF and HMON 
models. 

Table 5: Comparison between the experimental HAFS-v0.3A and HAFS-v0.3AS configurations run in 2022. 
Differences between the two configurations are highlighted in red. 

HAFS-v0.3A Configuration HAFS-v0.3S Configuration 

Regional storm-centric 6-km parent with a 
2-km storm-following moving nest 

Regional storm-centric 6-km parent with a 
2-km storm-following moving nest 

L81 vertical levels with a 2-hPa model top L81 vertical levels with a 2-hPa model top 

Model physics time step of 90s and 
radiation time step of 900s 

Model physics time step of 90s and 
radiation time step of 1800s 

Positive-definition tracer advection scheme Positive-definition tracer advection scheme 

Turn on topography smoothing Turn on topography smoothing 

Use the HAFS CCPP physics suite with 
GFDL MP, modified PBL 

Use the HAFS CCPP physics suite with 
Thompson MP, modified PBL 

VI (VM for all storms) and inner-core DA for 
model initialization and warm-cycling 

VI (VM for hurricane strength only) and 
inner-core DA for model initialization and 

warm-cycling 

CMEPS-based ocean coupling with an 
extended HYCOM ocean domain 

CMEPS-based ocean coupling with an 
extended HYCOM ocean domain 

Upgraded GFDL vortex tracker Upgraded GFDL vortex tracker 

https://HAFS-v0.3A
https://HAFS-v0.3A
https://HAFS-v0.3S
https://HAFS-v0.3A
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The HREx experiment in 2022 was a resounding success. HAFS was successful in modeling the dual 
eyewall structure of Hurricane Ian. Atlantic track forecast error showed a marked improvement in skill 
with the HAFS system versus HWRF in 2022. That said, there were also challenges to pursue into 2023. 
Intensity performance demonstrated periods of both improvement and degradation versus HWRF. We 
continue to investigate periods of intensity forecast degradation to better understand why this occurred, 
and how to remedy it. From a computing standpoint, issues with the NOAA HPC system “Jet” required 
running experimental HREx runs on WCOSS, which is typically reserved for operational computing. 
This occasionally resulted in longer wait times for open cores for the HREx runs. The HFIP team is 
pursuing a cloud computing option in 2023 in order to evaluate reliability and resource availability versus 
Jet. 

The configurations of HAFS-v0.3A and HAFS-v0.3S that would be run in real-time and tested during the 
2022 hurricane season were synced as of 26 May 2022. Both HAFS variants feature: a regional 
storm-centric 6-km parent with a 2-km storm-following moving nest, L81 vertical levels with a 2-hPa 
model top, a model physics time step of 90s, a positive-definition tracer advection scheme, topography 
smoothing, the HAFS CCPP physics suite, inner-core DA for model initialization and warm-cycling, 
CMEPS-based ocean coupling with an extended HYCOM ocean domain, and an upgraded GFDL vortex 
tracker. The two variants differ in a number of ways as well. HAFS-v0.3A features a radiation timestep 
of 900 s, GFDL microphysics with a modified PBL, and vortex initialization for all storm intensities. 
Alternately, HAFS-v0.3S is configured with a radiation time step of 1800 s, Thompson microphysics with 
a modified PBL, and vortex initialization for hurricane strength systems only. 

https://HAFS-v0.3S
https://HAFS-v0.3A
https://HAFS-v0.3S
https://HAFS-v0.3A
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Figure 30: Track (a, c), and intensity (b, d) forecast errors (a, b) and relative skill (c, d) with respect to the 
operational HWRF (magenta) for HAFSv0.3A (red) and HAFSv0.3S (cyan) for the 2020-2022 retro sample in 
the Atlantic. 

The two configurations of HAFS were evaluated using a three-year retrospective case sample (the 
2020-2022 seasons) for the Atlantic and East Pacific basins. In the Atlantic, HAFS-v0.3A and 
HAFS-v0.3S provided improved track forecasts at all lead times with respect to HWRF, on the order of 
5-15% (Figure 30a,c). In the East Pacific, both HAFS variants provided improved track forecasts at all 
lead times, except for 12 h (Figure 31a,c). For intensity, both HAFS configurations have comparable 
intensity forecast skills with HWRF from days 0-2, with some degradation of skill from days 3-5 in the 
Atlantic (Figure 30b,d). For the East Pacific, both HAFS configurations produced similar intensity 
forecast skills compared to HWRF at most lead times, but with improved skill on the order of 20% at day 
5 (Figure 31b,d). EMC and AOML/HRD are currently working on improving DA and model physics 
schemes specifically to improve days 3-5 intensity forecast skill in the Atlantic. 

Figure 31: As in Figure 30, but for the East Pacific basin from 2020-2022. 

It should be noted that following the real-time experiments in 2022, a software bug was discovered in the 
momentum flux exchange between the atmosphere and the ocean model. This bug resulted in a slightly 
degraded intensity forecast in both HAFS configurations. Subsequent re-runs with the bugfix resulted in 
improved intensity forecast skill compared to the real time experiments. 

b. HAFS Experimental Ensemble 

https://HAFS-v0.3S
https://HAFS-v0.3A
https://HAFSv0.3S
https://HAFSv0.3A


63 

Additionally, an experimental HAFS ensemble was run in the Atlantic in 2022 in real time as a part of the 
HREX experiment. The ensemble configuration is based on HAFSv0.3A, but due to the increased 
computational cost associated with running multiple members in an ensemble, the model is run with 
lower horizontal resolution: ~6-km horizontal resolution without nesting, L76 vertical levels, and a 
smaller domain. GFS Near-Surface Sea Temperature Scheme (NSST) is used to initialize the ocean, but 
the ensemble runs without ocean coupling. The ensemble is configured with one unperturbed control 
member plus 11 perturbed ensemble members, running four cycles per day (00Z, 06Z, 12Z and 18Z). 
Initial condition and boundary condition perturbations are provided from the GEFS at 0.5x0.5 degree 
resolution, and physics perturbations consist of stochastically perturbed physics tendencies (SPPT), 
stochastic kinetic energy backscatter (SKEB), and stochastically perturbed PBL humidity (SHUM). 

Figure 32: HAFS Experimental Ensemble 2022: (a) track forecast skill of ensemble mean (blue) with respect 
to unperturbed control member (green); and (b) intensity forecast skill of ensemble mean (blue) compared to 
HAFSv0.3A (red), HAFSv0.3S (cyan), and the unperturbed control member (green). 

Relative to the unperturbed control member, the HAFS ensemble mean forecast produces neutral skill for 
track (Figure 32a), but significant improvement for intensity (Figure 32b). The ensemble mean intensity 
forecast is on the order of 20% more skillful than the ensemble control from 48-96 h, and exhibits 5-15% 
greater skill than HAFS-v0.3A and HAFS-v0.3S for intensity from 42-72 h. 

c. Future Work and Preparing for Operational Transition 

Additional work is currently underway to prepare EMC for the HAFSv1.0 release, including: merging the 
HAFSv0.3 code with the latest UFS weather model, implement of ESG grid with dynamic core diffusion 
tuning, model physics tuning to improve intensity forecasts, vortex initialization threshold optimization, 
4DEnVar using GDAS ensemble, enhanced GOES-R AMVs and GOES-18/NOAA-21, NOAH MP Land 
Surface Model (LSM) with VIIRS Veg Type, Unified Gravity Wave Drag, uGWP, ocean coupling bug fix, 
ensuring that the code complies with NCO code standard, evaluating the model for stability on multiple 
platforms, testing and evaluation of JTWC basins, and evaluation of the impact of the new GFSv16.3 

https://HAFS-v0.3S
https://HAFS-v0.3A
https://HAFSv0.3S
https://HAFSv0.3A
https://HAFSv0.3A
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input for initial and boundary conditions. All of these steps are underway, and will be addressed prior to 
the HAFSv1.0 release scheduled for summer 2023. 

3.5. Summary and Concluding Remarks 

HFIP in 2021 and 2022 has demonstrated the utility of the new HAFS model in real-time hurricane 
forecasting scenarios. HAFS has demonstrated that it is at least as skillful in terms of predicting track, 
intensity, rapid intensity change, and structure as the existing top-tier HWRF system, and is occasionally 
5-10% better for some storms. The focus for 2023 will be preparation and implementation of HAFS v1 
into operations, following the timeline outlined in Figure 33. We will evaluate the potential for retirement 
of operational HWRF and HMON, while tailoring this decision to NHC needs and feedback. It is likely 
that there will be an initial period of overlap, in which HAFS will run operationally while HWRF and 
HMON continue to run, in order to ease the transition for NHC forecasters. 

Figure 33: Timeline for testing, evaluation, and operational transition for HAFSv1.0. 

In 2023, we will configure and test multiple HAFS pre-V2 configurations for the HFIP real-time 
experiment for the 2023 hurricane season. HFIP will also work closely with our EMC and HRD partners 
to develop a 21-member HAFS ensemble system, with 6-km horizontal resolution, encompassing the 
Atlantic and East Pacific domains. HFIP will continue to support and expand upon our existing Social, 
Behavioral, and Economic Sciences (SBES) into probabilistic guidance and hazard communications. 
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Appendix A: List of Acronyms 
AEMI GEFS with 6 hour interpolation 

AOML Atlantic Oceanographic and Meteorology Laboratory 

AVNI GFS with 6 hour interpolation 

AWIPS Advanced Weather Interactive Processing System 

CCPP Common Community Physics Package 

CLIPER Climate and Persistence model 

CMC Canadian Meteorological Center model 

CMCI CMC with 6 hour interpolation. 

COAMPS Coupled Ocean/Atmosphere Mesoscale Prediction System-Tropical Cyclone 

CONUS Contiguous United States 

CPHC Central Pacific Hurricane Center 

CTCI COAMPS-TC 6 hour interpolation 

CTCX NRL's Coupled Ocean/Atmosphere Mesoscale Prediction System for Tropical 
Cyclones (COAMPS-TC) model 

DA Data Assimilation 

DTC Developmental Testbed Center 

D-SHIPS Decay-Statistical Hurricane Intensity Prediction Scheme 

DTOPS Deterministic to Probabilistic Statistical RI Index 

ECMWF European Centre for Medium-range Weather Forecasts model 

EDMF Eddy Diffusivity Mass Flux 

EMC Environmental Modeling Center 

EGRI UKMET with 6 hour interpolation 

EM Equally-weighted Ensemble Mean for models used in MMSE 

EMXI ECMWF with 6 hour interpolation 

EnKF Ensemble Kalman Filter 

EFS Experimental Forecast System 

ESRL Earth System Research Laboratory 

FAR False Alarm Rate 

FSSE Florida State University Super-Ensemble Corrected Consensus 

FV3 Finite Volume Cubed-Sphere 

GDP Program and Global Drifter Program 

GDAS Global Data Assimilation System 

GEFS Global Ensemble Forecast System 
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GFDL Geophysical Fluid Dynamics Laboratory 

GFDI GFDL with 6 hour interpolation 

GFS Global Forecast System 

GFSI Early GFS with 6 hour interpolation 

GHMI GFDL adjusted using a variable intensity offset with 6 hour interpolation 

GIV NOAA Gulf IV 

GSI Grid-point Statistical Interpolation 

HAFS Hurricane Analysis Forecast System 

HCCA HFIP Corrected Consensus Approach 

HDOBS High Density Observations 

HFIP Hurricane Forecast Improvement Program 

HMON Hurricanes in a Multi-scale Ocean coupled Non-hydrostatic model 

HMNI HMON with 6 hour interpolation 

HNMMB Hurricane Non-hydrostatic Multi-scale Model on B-grid 

HPC High Performance Computing 

HRD Hurricane Research Division 

HWHI Basin-scale HWRF with 6 hour interpolation 

HWMI HWRF Ensemble Mean Forecast Interpolated Ahead 6 hour 

HWRF Hurricane Weather and Research Forecasting 

HWFI HWRF with 6 hour interpolation 

HYCOM HYbrid Coordinate Ocean Model 

IOOS Integrated Ocean Observing System 

IVCN Intensity consensus of at least two of DSHP, LGEM, HWFI, CTCI, HMNI 
forecasts 

JEDI Joint Effort for Data Assimilation 

JTWC Joint Typhoon Warning Center 

LGEM Logistics Growth Equation Model 

MAE Mean Absolute Error 

MMSE FSU Multi-Model Ensemble 

NAM North American Mesoscale Model 

NAVGEM Center Navy Global Environmental Model 

NWS National Weather Service 

NCEP National Centers for Environmental Prediction 

NCO NCEP Central Operations 

NCAR National Center for Atmospheric Research 
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NEMS NOAA Environmental Modeling System 

NGGPS Next Generation Global Prediction System 

NGPI NOGAPS with 6 hour interpolation 

NGXI NOGAPS with 6 hour interpolation 

NHC National Hurricane Center 

NMM Non-hydrostatic Mesoscale Model 

NMMB NMM on the B-grid 

NMME Non-Hydrostatic Mesoscale Model on an E-grid 

NOGAPS Navy Operational Global Atmospheric Prediction System 

NNIC Neural Network Intensity Combination 

NVGI Navy Global Environmental Model 6 hour interpolation 

OAR Oceanic and Atmospheric Research 

OFCL Official National Hurricane Center Forecast 

OSEs Observing system experiments 

OSSE Observing system simulation experiments 

POD Probability of Detection 

POM Princeton Ocean Model 

RI Rapid Intensification 

RW Rapid weakening 

SAR Stand Alone Regional 

SFMR Stepped-Frequency Microwave Radiometer 

SIP Strategic Implementation Plan 

SHIFOR Statistical Hurricane Intensity Forecast 

SHIPS Statistical Hurricane Intensity Prediction System 

SPICE Statistical Prediction of Intensity from a Consensus Ensemble 

SPIN-UP Slang terminology for vortex acceleration and/or initialization 

SPIN-DOWN Slang terminology for vortex deceleration and/or termination 

SREF Short Range Ensemble Forecast 

SST Sea surface temperature 

SSS Sea surface salinity 

TAB Trajectory And Beta (TAB) model for trajectory track using GFS input 

TC Tropical Cyclone 

TVCA Track Variable Consensus of at least two of AVNI, EGRI, EMXI, NGPI, GHMI, 
HWFI forecasts 
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TVCE Variable Consensus of AVNI, EGRI, EMXI, NGPI, GHMI, GFNI, HWFI Model 
Track Forecasts 

TVCI Variable Consensus of AVNI, EGRI, EMXI, NGPI, GHMI, GFNI, HWFI Model 
Track Forecasts (6-hour interpolation) 

TVCN Track Variable Consensus 

UFS Unified Forecast System 

UKMI United Kingdom Meteorological Office model with 6 hour interpolation 

UW4I University of Wisconsin’s Non-hydrostatic Modeling System (4 km) 

UWNI UW-NMS with 6 hour interpolation (UWNI) 

UW-NMS University of Wisconsin Non-hydrostatic Modeling System 

WMO World Meteorological Organization 

WRF Weather Research & Forecasting 

WFO Weather Forecast Office 
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