Performance of hi-res GFS-based NOAA models v ECMWF 2013 HFIP summer demo – LANT/EPAC

Mike Fiorino NOAA ESRL Boulder CO 20 November 2013

ATCF ID	Model	Resolution (3n+1 rule)	Comments
AVNO	GFS T574L64	23 km	GFS baseline
FIM9	FIM G9L64	15 km	2011 GFS physics, dynamical core improves
HWRF	HWRF	27:9:3 km	GFS IC/BC – highest res NOAA model
GEOO	GFS SL T1148L64	l l km	experimental semi-lagrangian version of GFS2013 run at ESRL
EDET	ECMWF HRES T1279L137	I0 km	IFS cycle 38r2 (25 JUN 13) increased vertical res; sfc drag; shallow cu

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

slide - I

Prelims and NBs

- verify against working best track using NHC/JTWC rules if it's a TC (!= LO/WV/PT...) – verify
 - no special treatment of model and/or best track positions over land
- EDET comes from ECMWF (tigge or bufr)
 - ECWMF tracker using *full res fields* has a few issues
 - intensity forecasts have less bias compared to trackers using I deg fields (e.g., EMX)
- tracking for GFS/FIM9/GFS-SL uses 0.5 deg global fields will not completely resolve model TC intensity
- emphasize *model* performance vice performance as a *forecast aid*
 - will not compare to OFCL or other 'late' aids such as TVCN
- homogeneous comps every 12 h vice 06 h because HRES runs 00/12UTC
 - I2-h run separation ~ e-folding time for run-to-run error correlation
- forecast error = 'track error' = great-circle distance between forecast and verifying position (Charlie Neumann)

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

review of the EPAC/LANT season

http://ruc.noaa.gov/hfip/tcact

LANT: lowest Hurricane ACE in last 48 years...EPAC: -46% below average ACE

weak activity in LANT makes stats less meaningful...

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

LANT 2013 – forecast error

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

ECMWF tracker issues...

- storms: 02L, 06L, 09L
- ok initial position
- 24-h forecast position in EPAC
- probably a bad first guess for 12-h position...
- added switch to toss cases with big 12-h errors

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

LANT 2013 – forecast error

- mean errors for taus 96 & 120 h are not related to basin-wide errors (= 09L)
- from taus 36-72 h ECMWF has slower error growth
- HWRF low initial position error, but higher error growth
- FIM9 ~ AVNO

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

LANT 2013 – intensity error

- ECMWF has highest initial error; HWRF almost none!
- very low mean abs errors (~10 kt)
- mean abs error ~
 mean error (bias)
- from taus 36-72 h ECMWF has slower error growth
- HWRF low initial position error, but higher error growth
- FIM9 ~ AVNO, but higher initial intensity error

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

LANT 2013 – tau 72 forecast error by storm

LANT 2013 HWRF v FIM9 v GFS v ECMWF - tau 72 by storm

- 09L (HUMBERTO) most cases
- ECMWF has lower error for all storms except 07L (GABRIELLE – one case)
- HWRF problems with 05L, 09L, 11L

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

EPAC/LANT 2013 – ECMWF intensity errors

affect of grid resolution on intensity

- TM tracker uses 1.0 deg grids; ECMWF tracker
 ~ 15 km grids
- initial intensity bias similar...
- but decreases in time using full/native grids in the ECMWF tracker ~ 30-60%
- improving model intensity may come from initial storms becoming smaller during the forecast

GFS hi-res models v ECMVVF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

EPAC 2013 – forecast error

EPAC 2013 HWRF v FIM9 v GFS v ECMWF - forecast error

- ECMWF still the gold standard...
- HWRF low initial position error, but higher error growth
- FIM9 >~ GFS a good year for FIM in EPAC

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

EPAC 2013 – intensity error

- as in the LANT, ECMWF has highest initial intensity error
- HWRF very low initial intensity error, small bias taus 0-72 h, very good mean abs errors
- FIM9 has larger negative bias v GFS

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

EPAC 2013 – tau 72 forecast error by storm

EPAC 2013 HWRF v FIM9 v GFS v ECMWF - tau 72 by storm

- largest contribution to 72-h mean error:
 - 04E (DALILA)
 - 07E (GIL)
 - 08E (HENRIETTE)
 - I7E (RAYMOND)
- ECMWF > all
 - 06E,07E, 17E,
- FIM9 > GFS
 → 04E, 07E, 08E, 17E

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

LANT 2013 – forecast error – add GFS-SL

LANT 2013 HWRF v FIM9 v GFS-SL v GFS v ECMWF - forecast error

- fewer cases because of GFS-SL
- GFS-SL has higher initial position error
- GFS-SL ~ GFS 0-48 h but large error growth >= 72 h

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

EPAC 2013 – forecast error – add GFS-SL

EPAC 2013 HWRF v FIM9 v GFS-SL v GFS v ECMWF - forecast error

- fewer cases because of GFS-SL – 6 storms before the I AUG I3 start of the demo
- GFS-SL has greatest error growth
- ECMWF lowest error growth for tau >= 36h
- GFS-SL in WPAC even worse...

GFS hi-res models v ECMVVF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

other GFS-based models: COAMPS-TC, GFDL EPAC/LANT

EPAC/LANT COAMPS-TC v GFDL v HWRF v GFS - forecaast error

- limited # of COTC runs in NHC adecks
- HWRF closer to GFS

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

Takeaways

- LANT 2013 stats cannot be indicative of model errors in general
 - need to dig into individual cases to understand if errors are systematic
- HWRF has very low initial position and intensity errors
 - vortex initialization recovers almost all of the Tcvitals
- FIM9 had a good year v GFS
- resolution not a sufficient condition for TC prediction success
 - COAMPS-TC v GFDL v HWRF v GFS-SL
- doubling the resolution of the GFS degraded TC performance
 - consistent with experience at ECMWF need to 'adapt' physics to new resolution

GFS hi-res models v ECMWF LANT/EPAC 2013 Mike Fiorino ESRL HFIP telcon 20131120

