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Forecasting RI remains a challenge
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Cangialosi et al. (2020) DeMaria et al. (2021)



When the external environment is favorable, 
intensification rates depend more on 
internal dynamics

External Environment

• Sea Surface Temperatures

• Vertical Wind Shear

• Environmental humidity

Internal Dynamics

• Heating Efficiency in the 
Balanced Vortex Model

• Convection Organization

• Updraft location within 
Radius of Maximum Wind 
(RMW)
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RI = 30 kt within 24 hr
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Hurricane (TC) intensification is often likened to 
the “ice skater” analogy
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PC: https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/11-2-conservation-of-angular-momentum/



But does intensification require contraction?

7
PC: https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/11-2-conservation-of-angular-momentum/



But does intensification require contraction?

8
PC: https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/11-2-conservation-of-angular-momentum/

“It remains unclear how typical it is for the RMW to reach a 
steady state prior to peak intensity, as opposed to following 
the existing paradigm, where peak intensity is coincident with 
the end of contraction. “

Stern et al. (2015)
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Hurricane Charley

PC: https://en.wikipedia.org/wiki/Hurricane_Charley
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Research Goal How does hurricane structure and intensity 

matter for intensification rates?
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PC: https://www.nesdis.noaa.gov/news/six-tropical-systems-swirl-around-two-oceans



First Step How would you classify the intensity 

and size of a hurricane?
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PC: https://www.nesdis.noaa.gov/news/the-2021-atlantic-hurricane-season-glance
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1: Utilize an EOF analysis to create 
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height-resolved TCBL models

Outline
Part 1: 

Developing 
the 

framework

Part 2: 
Developing 
the initial 

profiles

Part 3:
What 

happens?

Part 4: 
Why?*

(one explanation)



Part 1: Developing the 
Intensity-Size Phase Space

This study was recently published in JGR: Atmospheres!Casas et al. (2023)Doi: 10.1029/2022JD037089

https://doi.org/10.1029/2022JD037089
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We have computed an EOF on 7 commonly observed 
aircraft observations and Best Track estimates

Ex: Hurricane Rita (2005) near peak intensity
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Normalized Angular Momentum Flight-level Tangential Wind
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Normalized Angular Momentum Flight-level Tangential Wind

ɸ=45°
ɸ=45°

We have computed an EOF on 7 commonly observed 
aircraft observations and Best Track estimates

Ex: Hurricane Rita (2005) near peak intensity
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The Resulting EOF Structures

TC Intensity

TC Size

TC Maturity 
(Mostly Phi)



Phi is most closely aligned with 

the intensity axis

Mmax is most closely aligned 

with the size axis

The (Weak, Big) quadrant has 

the largest outliers
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Using the EOF 
Framework

Intensity

Size



Example Observational Comparison

25Rita (2005) and Charley (2004)



This framework easily allows us 

to see that:

• Rita is considered an average-

sized hurricane that 

contracted at first and 

expanded later on

• Charley is an extremely small 

hurricane that grew a bit

26

Enlarged 
Observations
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Improve Definitions of TC 

Intensity & Size

Used an EOF analysis to create 

orthogonal definitions of intensity 

and size

Develop Better Way to Characterize 

TC Structure

Defined a new parameter “phi”
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This study was recently 

published in JGR: Atmospheres!

Casas et al. (2023)

An Intensity and Size Phase 

Space for Tropical Cyclone 

Structure and Evolution

Doi: 10.1029/202
2JD037089

https://doi.org/10.1029/2022JD037089


Part 2: Assessing TC 
Variability & TCBL Responses
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1. Define an EOF, where: 

1. PC1 = Intensity
2. PC2 = Size

2. Domain of interest is 
between  -1.5 to 1.5 with bins 
of 0.5x0.5

(shading denotes number of 
obs. within bin)

30

Methods Pt. I
Develop the EOF

Big

Strong

Small

Weak



1. Define an EOF, where: 

1. PC1 = Intensity
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1. Develop initial bogus vortices 
from bin averages and an 
assumption of a linear decay 
of normalized angular 
momentum from the RMW to 
R34 (for the red profiles)

32

Methods Pt. II
Create the Bogus Vortices

Only red tangential wind profiles used in this study



1. Develop initial bogus vortices 
from bin averages and an 
assumption of a linear decay 
of normalized angular 
momentum from the RMW to 
R34 (for the red profiles)
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1. Use all 35 red profiles to 
initialize the axisymmetric 
version of CM1

1. All conditions aside from 
initial structure are 
identical
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Methods Pt. III
Run axisymmetric CM1
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Introducing Color Key
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Hue of points represents PC1 

    (cool colors = -PC1; warm colors = +PC1)

Size/Shading represents PC2

    (small/light = -PC2; big/dark = +PC2)
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Part 3: Investigating Structure 
and Intensity Impacts on RI 
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Part 4: 
Why?
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Points denote RI onset

Lines span from 0-24 hr after RI 
Onset

Shading = instantaneous 
intensification rate of Vmax
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Big TCs reach higher peak 
intensities than small TCs 

The initially weak TCs had not 
yet reached their peak 
intensities within 24 hrs

There is a suggestion that the 
intensification rates tend to be 
fastest in the (Strong, Small) 
quadrant regardless of starting 
condition
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Intensification Rates
0-24 hr after RI Onset
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Big TCs reach higher peak 
intensities than small TCs 

The initially weak TCs had not 
yet reached their peak 
intensities within 24 hrs

There is a suggestion that the 
intensification rates tend to be 
fastest in the (Strong, Small) 
quadrant regardless of starting 
condition
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Maximum instantaneous 
intensification rates keep 
increasing even after TCs reach 
above average intensities

(The fastest rates occur just 
before TCs reach quasi-steady 
state)
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Rates of Change 
0-72 hr after RI Onset
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Big TCs reach higher peak 
intensities than small TCs 

The initially weak TCs had not 
yet reached their peak 
intensities within 24 hrs

There is a suggestion that the 
intensification rates tend to be 
fastest in the (Strong, Small) 
quadrant regardless of starting 
condition
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Small TCs are associated with 
slightly faster intensification 
rates

Now let’s examine how RI 
varies as a function of initial 
intensity and size
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We’ll compare how Vmax 
changes as a function of PC1 
and PC2 at RI Onset
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There is a surprisingly linear 
relationship with Vmax 

The initial rate of RI depends more 
on the intensity at RI Onset than 
the size

The more intense a TC is at RI 
Onset, the faster it could intensify 
within 12 hours in an ideal 
environment
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Change in Vmax 
12 hr after RI Onset

Change in Vmax 12 hours* after RI Onset

PC1- Intensity at RI Onset PC2-Size at RI Onset

BigStrong SmallWeak

*The relationship from 0-24 hr after RI Onset was weaker because 
the most intense TCs reached their quasi-steady intensities

24-hr RI 
Definition



Blues = RMW contraction

Reds = RMW expansion
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RMW Contraction Rates
0-24 hr after RI Onset
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RMW Contraction rates are 
strongest in (Weak, Big) quadrant

Weak, small TCs experience 
more contraction than strong, big 
TCs

RI can occur with or without 
changes in RMW
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The amount of RMW contraction 
depends on both intensity and 
size at RI Onset

Size at RI Onset has a stronger 
linear relationship

The TCs that had initially slower 
RI rates were undergoing larger 
changes in RMW
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Change in RMW 
24 hr after RI Onset

Change in RMW 24 hours* after RI Onset

PC1- Intensity at RI Onset PC2-Size at RI Onset

BigStrong SmallWeak

*The relationship from 0-12 hr after RI Onset was weaker 
because the largest TCs were still rapidly contracting



RMW Contraction rates are 
strongest in (Weak, Big) quadrant

Weak, small TCs experience 
more contraction than strong, big 
TCs

RI can occur with or without 
changes in RMW
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Intensification rates keep 
increasing until just before TCs 
reach quasi-steady intensity

RMW Contraction rates peak at 
below average intensities
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The more intense a TC is at RI 

Onset, the faster it could intensify 

within 12 hours in an ideal 

environment

The fastest RMW contraction rates 

occur prior to the fastest 

intensification rates
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Part 4: Investigating TCBL 
effects on intensification vs. 
contraction
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1: Utilize an EOF analysis to create 
orthogonal intensity/size axes

2: Reconstruct semi-realistic idealized 
profiles from EOF axes

3: Utilize idealized profiles in 
axisymmetric CM1

4: Utilize idealized profiles in slab- and 
height-resolved TCBL models
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1. Use all three sets of 

simplified profiles in slab 

TCBL model

2. Use only red profiles in 

height-resolved TCBL model

54

Methods



55

Sl
ab

 T
C

B
L

Example Profiles from Each 
Quadrant

H
eight-

R
esolved TC

B
LDashed = initial profile

Solid = quasi-steady profile

Quasi-steady profiles shown



56

Sl
ab

 T
C

B
L

Strong, Big TCs have the largest Vmax

Tangential Wind (Vmax)
H

eight-R
esolved 

TC
B

L

PC1 (Intensity)

P
C

2 
(S

iz
e)



57

Sl
ab

 T
C

B
L

Strong, Big TCs have the largest supergradient winds

Supergradient Wind (Vmax[steady] - Vmax[initial])
H

eight-R
esolved 

TC
B

L

PC1 (Intensity)

P
C

2 
(S

iz
e)



58

Sl
ab

 T
C

B
L

Weak, Big TCs have the largest RMW
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Weak, Big TCBLs contracted the most
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Strong, Big TCs have the largest Wmax
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Weak, Big TCs have the largest gap between RMW and RMWW
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Strong, Big TCs appear to “amplify” the 

most

The initially strongest wind speeds 

become the largest supergradient 

winds

Weak, Big TCs appear to contract the 

most

The initially largest RMWs contract the 

most and have the largest gap between 

the RMW and RMWW
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“Inertial Stability”
(I)



64

Radius

Ta
ng

en
tia

l W
in

d
RMWRMWW

Wmax

Inflow (U)



65

Radius

Ta
ng

en
tia

l W
in

d
RMWRMWW

Wmax

Inflow (U)

Large U/I
Either larger U
Or smaller I

Response?



66

Radius

Ta
ng

en
tia

l W
in

d
RMWRMWW

Wmax

Inflow (U)



67

Radius

Ta
ng

en
tia

l W
in

d
RMWRMWW

Wmax

Inflow (U)

Small U/I
Either smaller U
Or larger I



68

Sl
ab

 T
C

B
L

Small U/I is associated with more vorticity stretching in                
strong, big TCs
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Strong, Big TCs “amplified” the 
most

Consistent with TCBL model 
results
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Weak, Big TCs contracted the 
most

Consistent with TCBL model 
results
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RMW Contraction Rates
0-24 hr after RI Onset
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Continue investigating relationships between TC 
structure and intensification

Test results in 3D simulations, in both sheared and 
unsheared environments

Test results in observations…
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Current postdoctoral research project progress
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Current postdoctoral research project progress
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Comments? Questions?

Email: Eleanor.Casas@Millersville.edu

Q
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mailto:Eleanor.Casas@Millersville.edu


Extra slides



Larger TCs reach higher 

intensities

Strong, small TCs may have the 

fastest intensification rates
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Vmax after RI Onset



Like the TCBL simulations, the 

initially weak, big TCs have the 

largest RMW contraction

Unlike the “ice-skater analogy,” 

RI is not tied to the rate at 

which the RMW contracts
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RMW after RI Onset


