

HU-2: Accelerate the development of the Hurricane Analysis and Forecasting System

Jonathan Poterjoy, Kenta Kurosawa, and Joseph Knisely

University of Maryland NOAA Atlantic Oceanographic and Meteorological Laboratory

Wednesday 21st July, 2021

Main topics

<u>Primary objective</u>: Implement novel data assimilation methodology for aircraft reconnaissance and all-sky radiance data assimilation in HAFS.

Sub-goals:

- Holistic testing of HAFS components (Var, EnKF, measurement operators, etc.)
- Optimize clear-air data assimilation strategies
- Explore potential for non-stop sequential data assimilation
- Test new filter methodology (particle filter and hybrid with EnKF)

Ongoing experiments

Current configuration uses 6-km grid spacing for ensemble and deterministic model domains.

Comparisons:

- Clear-air radiance DA (three different bias options)
- EnKF vs. E3DVar
- EnKF vs. local PF

The second and third set of comparisons do not re-center ensemble perturbations about Var solution.

Timeline

Aug. 11 - Sept. 18, 2020

4

Prior obs-space statistics (week 1)

- Online BC reduces bias in stratosphere and mid-troposphere
- Current HAFS Var is less accurate than EnKF (most notable errors in T and water vapor)

<u>Caveats:</u> Var benefits from FGAT; EnKF benefits from ensemble mean

Spatial differences: Var vs. EnKF

- 500-mb T difference (Var minus EnKF mean)
- Wavelengths < 1000 km removed with low-pass filter

 Var solution tends to be cooler and dryer over most of troposphere (ongoing work).

Local PF: code development

Heavily revised GSI local PF code for efficiency.

Testing in HAFS:

EnKF

60 nodes 1 task/node 40 threads : \sim 7 min

Local PF

60 nodes 1 task/node 40 threads : \sim 14 min

Idealized application

Prior:

$$\mathbf{x} \sim N(\bar{\mathbf{x}}, P)$$

 $\bar{\mathbf{x}} = (\frac{5}{5})$
 $P = (\frac{1.01}{1.00}, \frac{1.00}{1.00})$

Observation:

$$y = H(\mathbf{x}^{true}) + \epsilon$$

 $\epsilon \sim N(0, 0.1)$
 $H(x) = In(|x_1|)$

Bayesian posterior (PF)

Posterior:

 With large sample sizes, a PF provides an accurate estimate of the posterior distribution.

$$p(\mathbf{x}|y) \propto \sum_{n=1}^{N_e} \delta(\mathbf{x} - \mathbf{x}_n) p(y|\mathbf{x})$$

ç

EnKF posterior samples

Posterior:

 Non-Gaussian joint obs-model space prior poses challenges for EnKF.

$$p(\mathbf{x}|y) \propto N(\bar{\mathbf{x}}, P)p(y|\mathbf{x})$$

Hybrid PF-EnKF: partial PF update

Posterior:

- Different approximations of the prior density can be made during iterations.
- Example: PF update is performed first using only portion of likelihood.

$$p(\mathbf{x}|\hat{y}) \propto \sum_{n=1}^{N_e} \delta(\mathbf{x} - \mathbf{x}_n) p(y|\mathbf{x})^{0.2}$$

Hybrid PF-EnKF: partial EnKF update

Posterior:

- Different approximations of the prior density can be made during iterations.
- Example: EnKF update is performed second using remaining part of likelihood.

$$p(\mathbf{x}|y) \propto N(\hat{\bar{x}}, \hat{P})p(y|\mathbf{x})^{0.8}$$

Currently exploring the use of multivariate hypothesis testing to specify amount of PF vs. EnKF update:

Step 1:

 Perform a bivariate Shapiro-Wilk test in state-space and obs-space for each variable and its neighbors.

Step 2:

 Calculate weighted average of result using localization function.

- Results are flow-dependent
- Can differ tremendously across variables

HAFS ensemble update

Wavelengths > 150 km removed

- Zoom-in view near Laura for vorticity field (first 20 members)
- Note that PF performs larger update in SW quadrant

Summary

Numerous experiments currently underway:

- Testing of HAFS components (Var, EnKF, etc.)
- Optimize clear-air data assimilation
- Explore potential for non-stop sequential data assimilation
- New filter methodology (particle filter and hybrid with EnKF)

Continue to work with HAFS group (EMC, AOML, OU, Univ. Albany) to establish a robust prediction system capable of both operations and R2O efforts.