REGIONAL ENSEMBLES FOR USE IN DATA ASSIMILATION

Zoltan Toth, Brian Etherton, and Isidora Jankov

GSD/ESRL

Nov 10, 2011

PREAMBLE

- Choice between variational vs. sequential DA
 - Ongoing debate, pros & cons
- Emerging consensus
 - Use variational method with ensemble covariance
 - Variational DA
 - Static plus ensemble covariance
 - Benefits of variational DA + ensemble covariance
 - ECMWF, UKMET, other centers
- NCEP chose to use GSI with hybrid covariance
 - Combination of static and ensemble-based covariance

REQUIREMENTS FOR ENSEMBLE

- Variance
 - Must match short-range forecast error variance
 - How to evaluate?
- Covariance
 - Must capture space of dynamically growing fcst errors
 - Small subspace of growing errors
 - Matter & can be captured
 - Very large subspace of neutral/decaying errors
 - Cannot be sampled well and hurts
 - How to evaluate?
- Consistency of regional ensemble with global ensemble
 - Lack of it hurts covariance

OPTIONS FOR ENSEMBLE GENERATION

- Interpolate global initial conditions to LAM resolution
 - Consistency with boundary conditions
 - Limited fine scale info in covariance of short-range fcsts
 - Variance on coarser scales as good as in global system
 - Temporal consistency as in global ensemble

Enkf DA

- Variance estimate independent of variational DA
- Covariance noise introduced as part of DA
 - Observational noise, inflation
- Consistency with boundaries not resolved?
- Temporal consistency the more data, the less consistency
- Computational cost
- Theoretically not appealing
 - Not clear why DA needs to run twice?

CYCLED PERTURBATIONS

- Concept
 - Create fine scale perturbations consistent with boundaries from global ensemble
- Methodology
 - Run regional short-range ensemble with
 - Boundary forcing from global ensemble
 - Cycle difference between global and regional forecasts
 - Difference between
 - Global perturbed forecast interpolated onto regional grid &
 - Regional perturbed forecast
 - Rescale ensemble variance to variance in global ensemble
 - Variance estimate from global Enkf can be used

CYCLED PERTURBATIONS - ATTRIBUTES

- Variance
 - Analysis / short-range error variance estimate needed
- Covariance
 - Dynamically conditioned
- Consistency with boundary conditions
 - Yes
- Temporal consistency in perturbed analyses
 - Yes
- Link with NCEP operational regional ensemble
 - Can be run either with global Enkf or ETR

FUNCTIONS/REQUIREMENTS FOR DA-ENSEMBLE HYBRID SYSTEM

DA

Accurate estimate of the state of a system

- Estimate of error variance
 - GSI does not provide this

ENSEMBLE

- Dynamically conditioned forecast error covariance
- Forecast error variance reflecting background error variance

Regional DA & Ensemble systems fully consistent with global DA / Ens.

Temporally consistent series of perturbed initial conditions

COUPLED DATA ASSIMILATION & ENSEMBLE FCST SYSTEM

Preliminary IC perturbation test performed for HMT experiment 2009-2010

Nested domain:

- Outer/inner nest grid spacing 9 and 3 km, respectively.
- 6-h cycles, 120hr forecasts foe the outer nest and 12hr forecasts for the inner nest
- 9 members (listed in the following slide)
- Mixed models, physics & perturbed boundary conditions from NCEP Global Ensemble

Cloud Coverage July 30 2010 00UTC

00hr

06hr

COUPLED DATA ASSIMILATION & ENSEMBLE FCST SYSTEM

BACKGROUND

HREF testing plan

- Consider testing use of 12-km NA ensemble
 - GSD DTC NCEP collaborative effort
 - Influence of improved forecast boundary conditions
- Test cycling initial perturbations for HREF
 - Compare with other initial perturbation methods
- Connect with hybrid GSI DA
 - Covariances derived from cycled HREF
 - Regional GSI used as center of ensemble at initial time

Current Status

- Ensemble simulation of Earl using global boundaries
 - To test various physics
- XML / HWRF workflow in collaboration with DTC
 - Test effects of forecast boundaries (GEFS vs. EnKF)
 - Access to latest HWRF version

OPERATIONAL REGIONAL ENSEMBLE SYSTEMS

Overview

- Different centers use different approaches to ICs and LBCs problem
- Initial and LBC perturbations often use info from corresponding global EFS

UK Met Office:

- Global EFS uses regionalized version of Ensemble Transform Kalman Filter (Bishop et al. 2001).
- Originally the global EFS was used to provide ICs and LBCs to the regional EFS by simple interpolation to higher resolution LAM grid
- Regional ETKF used for a while
- Based on the Bowler and Mylne 2009 study decision was reversed
 - Currently simple interpolation used

Environment Canada:

- Global EFS uses Ensemble Filter approach
- Singular Vector approach tested
- Simple interpolation currently in place
- Ongoing development of regional Ensemble Filter?
- Central Institute for Meteorology and Geodynamics (Austria)
 - Cycled perturbations

PAST & CURRENT NCEP SYSTEMS

- Global Ensemble Forecast System (GEFS)
 - Breeding technique introduced 1992
 - Ensemble Transform with Rescaling (ETR) 2006
 - EnKF implementation planned for hybrid DA application Spring 2012
- Short-Range Ensemble Forecast (SREF) system
 - Breeding implemented 2000
 - ETR has not been implemented for the regional EFS
 - Global & regional systems not fully consistent
 - Different parts of ensemble use somewhat different perturbation techniques

HREF CHOICES — ENKF

- GSI is choice for DA
- EnKF can be used to generate ensemble
 - For generation of flow dependent covariance to be used in GSI
 - Running 2nd DA scheme to estimate error variances in GSI
 - Analysis error variance estimate is not for GSI (it is for EnKF)
 - Expensive
 - Perturbations may not be as dynamically consistent as with other options?
 - Regional EnKF may not be consistent with global ensemble?

HREF CHOICES — "CYCLING"

Dynamical downscaling or cycling of perturbations

- Simple
- Inexpensive
- Dynamically conditioned perturbations (by design)
- Regional system consistent with global (by design)
- Initial variance can be set according to best available estimate
 - Use analysis error estimates Global EnKF
- Initial & forecast boundary conditions from GEFS

Initial Perturbations "Cycling" using Global (GSI) Analysis and Global EnKF Forecasts

