

Estimating and Forecasting Tropical Cyclone Intensity at the National Hurricane Center

David Zelinsky, NHC/SRG
HFIP Regional Modeling Team
Physics Workshop
09/17/2012

NHC Definition of Intensity

 The maximum wind, averaged over a 1 minute interval at an altitude of 10m, associated with the circulation of the tropical cyclone at a given point in time

Note: With very few exceptions, direct measurements of this quantity are <u>not available</u>.

Sources of Intensity Information

- Satellites
 - Geostationary (Vis/IR)
 - Microwave soundings (AMSU)
 - Scatterometer surface winds
- Surface observation
 - Ships
 - Buoys
 - Land Stations
- Aircraft Recon
 - Flight Level Winds (adjusted to surface)
 - Dropsondes
 - SFMR
- Radar
 - Land-based (WSR-88D)
 - Airborne

Estimating Intensity: Real-Time

- Different instruments/sources may provide very different estimates
- The operational intensity is typically a blend of these, with some consideration given to the continuity of operations

Example: Hurricane Bill 19 August 1800 UTC

Dvorak

TAFB: 6.5/127 kt

- SAB: 6.0/115 kt

ADT: 6.4/125 kt

Recon

- SFMR: 102 kt

Flight-Level adjusted: 122 kt

Dropsonde WL150: 111 kt

Dropsonde MBL: 111 kt

OFCL at 1800 UTC: 115 kt

Estimating Intensity: Post Storm Analysis

- Specialists will reevaluate the intensity in the best track during the post-storm analysis.
- Post-storm analysis includes data that may not have been used in real time due to data latency or availability issues

Intensity Uncertainty

- Landsea (2012)
 quantified
 uncertainty in the
 best track by
 polling the
 Hurricane
 Specialist Unit
- Results stratified by the strength of storms and the observations available

Figure 3 from Landsea (2012)

Intensity Uncertainty

 Torn and Snyder (2012) quantified intensity uncertainty by verifying satellitebased intensity estimates against best-track data during times where reconnaissance data was available

Figure 11 from Torn and Snyder (2012) Top graphs are Atlantic storms, bottom are E. Pacific

Implications of Intensity Uncertainty

 Both studies suggest that it may be difficult to reach the HFIP goal of a 50% reduction in intensity error by 2018 for 1-2 day forecasts.

Would require an improvement in our capability to observe intensity

3-5 day errors still much
 larger than the uncertainty

How does an initial intensity of uncertainty of ~10 kt impact the ability of a model to make a 4-5 day intensity forecast?

Forecasting Intensity

- Dynamical models are interpolated over time to create "early" versions that are used for the forecast.
 - HWFI, GFDI, etc
 - Statistical models run quickly, and are based on the 6-hr old model runs, so interpolation is not necessary
- NHC Forecast typically near the intensity consensus IVCN or TV-15 (includes HFIP models accepted for intensity)
- May depart from the consensus based on:
 - Persistence
 - Obvious signs in the environment (cooler waters, increasing upper-level winds, etc)
 - Climatology
 - Perceived bias of a given model for a particular storm or situation
 - Qualitative assessment of global models

- Dynamical models produce explicit intensity forecasts based on the model's representation of a 10m (or lowest model level) wind
- Not clear if this is always appropriate based on model resolution and physics
- Intensity can change a lot over a short period of time, unclear what value is most appropriate
- Different models use different trackers to produce intensity values

- At 10,000 ft, SFMR has a 50% power footprint with a diameter of 1.3km, (1% power = 2.8km)
- 10-s averages from SFMR are used to determine intensity operationally
 - Resulting footprint is smaller than the gridspacing of most real-time models

Forecasting Intensity: Sources of Forecast "Busts"

- Primary concern:
 Rapid intensification
 and weakening
 - NHC forecast tends to be conservative
- Eyewall Replacement Cycles
- Land interaction and landfall timing

NHC Intensity "Wish-List"

- Improved/Additional RI and Eyewall replacement cycle guidance
- Magnitude and location of maximum 1-minute sustained 10m wind speed for each minute through integration; full wind field at hourly intervals; radius of 34, 50, 64 kt winds in each quadrant at hourly intervals
- Probability distribution of intensity change for ensembles, multimodel or single model, including Rapid Intensification
- Forecaster selectable layer analysis of moisture and wind (shear) fields
- Simulated radar/microwave imagery from regional models
- Guidance on the sensitivity of forecasts based on the model initialization
- Ensemble products which show the sensitivity of the intensity forecast to the track forecast

Summary

- The true intensity of a tropical cyclone is almost never known
 - NHC-determined intensity is ultimately based on a blend of data
- Rapid Intensification and weakening continues to be a problem
 - Any sizeable reduction in forecast busts associated with these will somewhat lower the average intensity forecast errors
- The main hope for the future lies in improved dynamical models, coupled with enhanced observations and understanding of the hurricane's inner core
 - Improvements to the dynamical models alone will not be enough
 - Computational advances will be required with increasing complexity and resolution of the dynamical models