

HWRF Surface Layer Thermodynamics Evaluation

Eric W. Uhlhorn and Joseph J. Cione HFIP Hurricane Modeling Workshop 17-18 September 2012

Special thanks....

HRD HWRF modeling team

- Gopal, Xuejin Zhang, Thiago Quirino, Vijay Tallapragada
- HFIP

Evaluation of coupled air-sea thermodynamics

- Observations from Tropical Cyclone Buoy Database (TCBD; Cione et al. 2000, Cione and Uhlhorn 2003, Cione et al. in review)
- HWRF 2011 retrospective model runs
- GPS dropwinsonde database (Zhang et al. 2011, Zhang and Uhlhorn 2012, Zhang et al. in preparation)
- Consider observations in hurricanes only
- Radially between 0.5 (no eye) and 6 RMWs

TC Buoy Observations

- Cione et al. 2000, 2003
- Temperature and humidity reported hourly
- Winds (10-min mean) reported every 10 mins.
- Obs. adjusted to 10-m level
- Winds converted to 1-min mean

2011 Season HWRF Retrospective Runs

- Configuration
 - **3** km inner nest
 - Coupled to ocean (POM)
 - Modified C_k , C_d (CBLAST & others)
 - Modified diffusion (Zhang et al. 2011)
 - Operational in 2012

IMPROVEMENT PROJ

2011 Season HWRF Retrospective Runs (cont.)

Storms

- Irene-09L (34 runs)
- Katia-IIL (46 runs)
- Maria-14L (41 runs)
- Ophelia-16L (48 runs)
- Philippe-17L (60 runs)
- Rina-18L (20 runs)

Total 249 runs, I 26 hr simulations, output every 3 hours

FORECasi

IMPROVEMENT PROJECT

2011 HWRF & TCBD Storm Stats

Model Sampling Methodology

Fields of SST, latent (Q_l) and sensible (Q_s) heat fluxes, and 10-m winds (U_{10}) are provided as model output

• Compute T_{10} , q_{10} from output model fields

IMPROVEMENT

- Sample model at TCBD buoy locations falling within model grid as cyclones translate/evolve
- Compute statistical distributions and compare with observations

IMPROVEMENT PROJECT

Observed vs. Simulated SST Variability

ND ATMOSA

9/18/2012

NSaa

NE FORECasi

Hurricane Katia Buoy "Intercept"

IMPROVEMENT PROJECT

10

15

n

15

10

n = 1924

GPS Dropwindsonde Database

Ongoing (labor-intensive) effort to add co-located AXBT SSTs to sonde profiles

50°N

40°N

10°N

NSaa

CANE FORECAST

IMPROVEMENT PROJECT

Empirical Probability Distributions

Relative Humidity

IMPROVEMENT PROJECT

Temperature and Dewpoint

HURRICANE FORECAST

HWRF Evaluation

IMPROVEMENT PROJECT

Controls on Moisture Flux

TCBD Obs.

- q_{10} better correlated with Δq than $q_{
 m s}$
- Both de-correlate slightly with increased wind, but *q*₁₀ remains more highly correlated

<u>HWRF</u>

- $q_{\rm s}$ better correlated with Δq than q_{10}
- q_{10} shows almost no relationship to to Δq at high winds

VE FORECasin

- A comprehensive evaluation of air-sea thermodynamic properties of the operational coupled HWRF has been performed.
- Results indicate:

IMPROVEMENT

RECASI

- HWRF atmosphere near-surface is typically warmer and more moist than observed
- HWRF surface layer significantly lower relative humidity
 - Gradual tendency toward saturation as wind speed increases (max ~97% at 60 m/s)
 - Obs show far more rapid trend toward saturation (>95% at 30 m/s, max ~97-98% at 40 m/s)
- POM-simulated SST cools significant less than observed in response to TC forcing

orecastr

- How to eliminate warm SST bias?
 - URI colleagues have indicated wind stress is reduced 25% in operational version for 2012
 - Comprehensive observation-based evaluation of operational coupled POM needed

How to cool/dry the surface layer?

- Fluxes and exchange coefficient modifications
- Spray (cools but moistens)

IMPROVEMENT PR

- Precipitation-induced downdraft transport
- Entrainment/shallow convection
- Is HWRF overly-sensitive to the ocean?
 - Coupled-model simulations have shown changes to the ocean coupling can have large impact on simulated intensity
 - Extensive coupled-modeling efforts have not led to significant improvements to intensity prediction